United States Army Corps of Engineers Chicago District

Collection and Analysis of Sediment Samples From the South Fork South Branch, Chicago River

July 21, 2004

Draft Final Report

Contents

Executive S	Summ	ary	ES-1
Section 1	Intr	roduction and Scope of Work	1-1
	1.1	Introduction	
	1.2	Site Description and History	1-1
	1.3	Scope of Work	1-5
Section 2	Fiel	ld Investigation Methods and Procedures	2-1
	2.1	Introduction	2-1
	2.2	Site Conditions	2-1
	2.3	Subsurface Sediment Investigation	2-1
		2.3.1 Utility Detection	2-1
		2.3.2 Equipment and Resources	
		2.3.3 Sampling Procedures	
		2.3.4 Investigation-Derived Waste	
	2.4	Laboratory Analysis	
Section 3	Res	sults of the Field Investigation	3-1
	3.1	Subsurface Conditions	
	3.2	Analytical Sediment Results	3-1
	3.3	Quality Assurance/Quality Control (QA/QC)	
Section 4	Ref	erences	4-1

Appendices

Appendix A - Water Surface Elevation Data

Appendix B - Sample Photographs

Appendix C - Soil Boring Logs and Field Notes

Appendix D - Laboratory Analytical Results

Appendix E - USACE Data Quality Analysis

Appendix F - Particle Size Laboratory Results

Figures

1-1	Site Location Map	1-3
1-2	Previous Sampling Locations	1-4
2-1	Sediment Sampling Locations, April 2004	2-2
2-2	Sampling Vessel	2-3
2-3	Support Vessel	2-4
2-4	Standard Ponar Dredge Used to Collect Grab Samples	2-4
2-5	Rossfelder P-3 Vibracore Unit with Attached Core Barrel	2-5
Ta	bles	
	bles GPS Coordinates of Sample Points	2-6
Ta 2-1 2-2		
2-1	GPS Coordinates of Sample Points Bulk Chemistry Parameters and Numbers of Samples Submitted TCLP and Hazardous Waste Parameters and Numbers of Samples	2-8
2-1 2-2	GPS Coordinates of Sample Points Bulk Chemistry Parameters and Numbers of Samples Submitted TCLP and Hazardous Waste Parameters and Numbers of Samples Submitted	2-8
2-1 2-2	GPS Coordinates of Sample Points Bulk Chemistry Parameters and Numbers of Samples Submitted TCLP and Hazardous Waste Parameters and Numbers of Samples	2-8 2-9 3-2

Acronyms

ASTM American Society for Testing and Materials

CCD City of Chicago Datum

CDM CDM Federal Programs Corporation CRCW Chicago River Controlling Works

DPR detailed project report
DQO data quality objective
EM Engineer Manual

EPA Environmental Protection Agency

° F degrees Fahrenheit

GPS global positioning system
HASP Health and Safety Plan
HDPE high-density polyethylene
HEM hexane extractable material

HTRW hazardous, toxic, and radioactive waste

IDW investigation-derived waste

IEPA Illinois Environmental Protection Agency

kg kilogram

LCS laboratory control standard

mg milligram MS matrix spike

MSD matrix spike duplicate

MWRDGC Metropolitan Water Reclamation District of Greater Chicago

NGVD National Geodetic Vertical Datum

MICE Methods Information Communication Exchange

MWRD Metropolitan Water Reclamation District

N/A not applicable NR not recorded

NWD North Western Division
PCB polychlorinated biphenyl
PID photoionization detector
PNA polynuclear aromatic

PPE personal protective equipment

ppm parts per million

PRP preliminary restoration plan

QA quality assurance QC quality control

RAPS Racine Avenue Pump Station

RCRA Resource Conservation and Recovery Act

SAP Sampling and Analysis Plan SDG sample delivery group SFSB South Fork South Branch

SGT silica gel treated

SOP standard operating procedure

SOW scope of work

SVOC semi-volatile organic compound

Acronyms (continued)

TCLP toxicity characteristic leaching procedure

TSCA Toxic Substances Control Act

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

USCS unified soil classification system VOC volatile organic compound

Executive Summary

CDM Federal Programs Corporation (CDM) was contracted on December 19, 2003 by the United States Army Corps of Engineers (USACE), Chicago District, to conduct sediment sampling and analysis at South Fork South Branch (SFSB), Chicago River.

The major objective of this sample collection and analysis effort is to assess whether if the sediment in Chicago River (SFSB) is deemed to be hazardous per exceedance of toxicity characteristic leaching procedure (TCLP) and other hazardous waste criteria.

Thirteen sediment cores were advanced along the length of the project site and five grab samples were collected from April 20 through 22, 2004. Sediment cores were collected using a Rossfelder P-3 vibracore unit and grab samples were collected using a standard ponar dredge. Continuous core samples were collected from the top of the sediment to a depth equal to the thickness of the sediment layer in each sample location. Sediment depths ranged between 5.5 and 16.8 feet. Sediment was field screened using a photo-ionization detector (PID) and classified using the Unified Soil Classification System (USCS). Sediments encountered at the site consisted primarily of sand and clay.

Thirteen core sediment samples and one field quality control duplicate sample were submitted for laboratory analysis for bulk chemistry parameters and TCLP and hazardous waste parameters. Five sediment grab samples were submitted for laboratory analysis for bulk chemistry parameters.

Sample results for polynuclear aromatic hydrocarbons were typically in the parts per million (ppm) range in most samples. Other semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), oil and grease, and metals were detected in the samples.

Analytical results were compared to Environmental Protection Agency (EPA) TCLP regulatory levels, but none of the compounds detected exceeded the criteria. Ignitability (flash point) was identified in one sample: SF-2004-B02 at 124 degrees Fahrenheit. Cyanide and sulfide reactivity were compared to EPA SW-846 levels and there were eleven samples with reactive sulfide results above 5,000 milligrams per kilogram (mg/kg): samples SF-2004-B01a and SF-2004-B02 (the two northernmost samples). Total PCB levels were compared to the Toxic Substances Control Act (TSCA) regulatory level and there were no exceedances.

Section 1 Introduction and Scope of Work

1.1 Introduction

This report presents the results of the collection and analysis of sediment samples in the South Fork South Branch (SFSB), Chicago River. The project was conducted by CDM Federal Programs Corporation (CDM) on behalf of the U.S. Army Corps of Engineers (USACE) under Contract Number DACW23-02-D-0003 as Delivery Order 3.

The USACE Chicago District and its local sponsor are investigating alternatives for the restoration of the SFSB. The preliminary restoration plan (PRP) has been approved and the project is now in detailed project report (DPR) phase, i.e. feasibility phase. Sediment characterization is critical in the development of a stream restoration plan. The analytical results produced from this study will be an integral piece of the DPR. Information regarding the extent and depth of contamination, along with toxicity characteristic leaching procedure (TCLP) results and other data that indicate presence or absence of hazardous waste in the SFSB, will help to determine the impacts of sediment quality to project costs, authority, and plan of action (USACE Scope of Work [SOW] 2003).

1.2 Site Description and History

The following information is from the USACE SOW for this project.

The SFSB is listed as an impaired stream in the Illinois Environmental Protection Agency (IEPA) 303(d) report, partially due to contaminated sediments. Environmental conditions that were recognized to have an impact on sediment quality for the SFSB include the discharge of animal remains from nearby stockyards that operated in the early 1900s, and pollutant sedimentation from recent discharges of storm water runoff. The site location is shown on **Figure 1-1**.

Previous sediment sampling was performed by the United States Environmental Protection Agency (USEPA), Metropolitan Water Reclamation District (MWRD), IEPA, and the Wetlands Initiative as summarized below:

- The IEPA collected two samples from the SFSB in September 1994. One sample was collected beneath the 35th street bridge, and the other beneath the Stevenson Expressway bridge.
- MWRD collected sediment samples from three locations in the SFSB in January of 1995. One sample was collected in the turning basin at the north end of the SFSB, one near the O Keefe Brothers Coal and Oil Company, and one on the south end of the fork north of the Racine Avenue Pumping Station.

• The USEPA performed a survey of sediment contamination over the entire Chicago River in October of 2000 (USEPA 2003). A 72-inch sediment core was collected in the SFSB during this event.

Previous sampling locations are shown in Figure 1-2.

Figure 1-1 Site Location Map

Figure 1-2 Previous Sampling Locations

Source: 2003 USACE SOW

1.3 Scope of Work

CDM was contracted on December 19, 2003 by USACE to conduct sediment sampling and laboratory analysis at South Fork South Branch, Chicago River, Illinois.

The major objective of this sample collection and analysis effort is to assess whether the sediment in Chicago River (SFSB) is deemed to be hazardous per exceedance of TCLP and other hazardous waste criteria. The sampling project consisted of the collection of 13 sediment core and 5 grab samples along the length of the project area.

As part of the sediment sampling, CDM followed the Final Sampling and Analysis Plan (CDM 2004) that was approved by USACE in February, 2004. CDM completed the following tasks:

- 1. Conducted vibratory drilling (i.e., vibracoring) using a Rossfelder P-3 vibracore and collected a total of 13 sediment samples
- 2. Collected 5 grab samples from the top six inches of the sediment layer, using a standard ponar dredge.
- Classified soils in the field according to the Unified Soil Classification System (USCS)
- 4. Prepared and submitted soil samples for laboratory analysis
- 5. Prepared data tables in tabular format
- 6. Prepared this report which includes the following:
 - Description of the site conditions encountered during work
 - Copies of field notes and boring logs
 - A map showing and identifying sample locations with a table including GPS coordinates
 - Color photographs of collected samples
 - Water surface elevation data for each day of sampling
 - Water depths at each sampling location
 - Sediment depth at each location (thickness of sediment layer)
 - Discussion of Data Quality Objectives (DQOs), including whether or not the DQOs were met

- Chain of Custody sheets
- A comparison of sediment core results to TCLP and other hazardous waste criteria.

This report is divided into four sections, including this introduction (Section 1). The remaining sections contain the following information:

- Section 2 Description of methods and procedures used during the site investigation
- Section 3 Results of the field investigation
- Section 4 References used to prepare this report

Section 2 Field Investigation Methods and Procedures

2.1 Introduction

Sediment sampling was conducted along the length of the SFSB, Chicago River from April 20 through 22, 2004 and was performed in accordance with the CDM Sampling and Analysis Plan (SAP) dated January 30, 2004. A Health and Safety Plan (HASP) was prepared prior to the start of field activities and was included in the SAP.

2.2 Site Conditions

Subsurface conditions are described in Section 3.1, with coring logs and USCS classifications in **Appendix C**. Water surface elevations were calculated as described in Section 2.3.3.

SFSB was accessible to sampling at the planned locations. Weather conditions during sampling included partly cloudy to cloudy skies, with rain during the afternoon of April 20 that halted field work. Temperatures ranged from the upper 40s to upper 50s Fahrenheit (° F).

2.3 Subsurface Sediment Investigation

Thirteen sediment cores were completed along the length of the project site using a Rossfelder P-3 vibracore unit. Continuous core samples were collected from the top of the sediment to a depth equal to the thickness of the sediment layer in each sample location. Sediment core samples were advanced through the sediment layer until refusal was met. Five grab samples were collected from the top six inches of the sediment layer using a standard ponar dredge. Both core and grab sample locations are shown on **Figure 2-1**.

2.3.1 Utility Detection

Before intrusive work was initiated, CDM reviewed utility information provided by the Office of Underground Coordination and did not find any utilities that interfered with the scheduled sampling locations. CDM also contacted the Chicago Utility Alert Network, also known as Digger, to locate underground utilities that cross under the river along the length of the project. CDM met with Ameritech and ComEd and identified that Ameritech did not have utility conflicts at the sampling locations. The ComEd representative expressed concern over some utilities underneath the Archer bridge. After verification with ComEd engineers, it was concluded that the

Figure 2-1
Sediment Sampling Locations, April 2004

Map Source: Topo Zone 2003

sample locations SF-2004-B04 and SF-2004-B05 would not interfere with ComEd utilities, as long as they were not located directly beneath the Archer street bridge.

2.3.2 Equipment and Resources

Aqua Survey, Inc. of Flemington, New Jersey was retained to provide vibracoring services. Two small vessels were used to conduct field activities and were launched from Crowley's Yacht Yard located at 2500 South Corbett Street, Chicago, Illinois.

• The first vessel was the Navesink which is a pontoon work boat 24 feet long and 8 feet wide. The vessel is equipped with a 100 horsepower Johnson engine and was transported to the launch site on a trailer. The vessel houses the vibracore unit that was used to drill the test borings. The Navesink sampling vessel is pictured in **Figure 2-2**.

Figure 2-2
Sampling Vessel
South Fork South Branch, Chicago River

• The second vessel was the Monark which is a research vessel 21 feet long and 8 feet wide. The vessel is equipped with a 150 horsepower Yamaha engine and was transported to the launch site on a trailer. The vessel had a small cabin, was used to ferry people, and was used to process samples. **Figure 2-3** provides a representative photo of this support vessel.

Figure 2-3
Support Vessel
South Fork South Branch, Chicago River

The Trimble ProXRS global positioning system (GPS) on board the Navesink was used to position the vessels at each sampling location. Once positioned, a standard ponar dredge (**Figure 2-4**) was lowered into the water and used to collect sediment from the top six inches of the sediment layer for each of the five grab samples.

Figure 2-4
Standard Ponar Dredge Used to Collect Grab Samples
South Fork South Branch, Chicago River

Drilling was conducted using a Rossfelder P-3 vibracore unit with an attached core barrel, as represented in **Figure 2-5**. The vibrational energy produced by the vibracore unit allowed the core barrel to penetrate into the sediments. A core catcher was attached to the end of the barrel to hold the sediment inside the barrel when withdrawn from the sediments. Each of the 13 core barrels were lined with a clean clear flexible plastic liner.

Figure 2-5
Rossfelder P-3 Vibracore Unit with Attached Core Barrel
South Fork South Branch, Chicago River

2.3.3 Sampling Procedures

Sample locations were surveyed using a Trimble ProXRS GPS unit. Real-time differential GPS correction was automatically applied to survey points. The position of the sample points, as well as water surface elevation, water depth, penetration, and recovery, are listed in **Table 2-1**. Sampling locations SF-2004-B06 and SF-2004-B13 were adjusted slightly in the field and new locations were approved by the USACE representative on board. At sampling location SF-2004-B06, the vibracore penetrated the sediment approximately 2 feet but had no recovery. A second attempt was made approximately 25 to 30 feet from the first location and there was little to no penetration. The USACE representative suggested moving to the west bank of the

creek where sediment thickness was expected to be thicker. The exact grid locations for SF-2004-B13 were located under the walkway at the Racine Avenue Pump Station (RAPS). The USACE representative approved moving the sampling location to the canal.

Table 2-1

GPS Coordinates of Sample Points,

South Fork South Branch, Chicago River, April 2004

Sample ID #	Sample Description	Longitude/ Latitude	Water Surface Elevation ^(a) (feet)	Depth of Water (feet)	Penetration (feet)	Recovery (feet)	Date Measured
SF-2004-B01a	Core Sample	Long: 87° 39′54″.274 Lat: 41° 50′ 38″.125	577.07	6.6	12.9	10.5	21 April 2004
SF-2004-B02	Core Sample	Long: 87° 39′ 54″.668 Lat: 41° 50′ 29″.369	577.29	4.1	16.0	16	20 April 2004
SF-2004-B03	Core Sample	Long: 87° 39′ 52″.291 Lat: 41° 50′ 24″.639	577.27	12.5	11.1	9.6	20 April 2004
SF-2004-B04	Core Sample	Long: 87° 39′51″.983 Lat: 41° 50′22″.131	577.04	12.2	9.5	7.0	21 April 2004
SF-2004-B05	Core Sample	Long: 87° 39′ 49″.623 Lat: 41° 50′ 18″.211	577.09	11.4	10	7.3	21 April 2004
SF-2004-B06	Core Sample	Long: 87° 39′ 45″.744 Lat: 41° 50′ 10″.357	576.85	7.5	8.2	6.5	21 April 2004
SF-2004-B07	Core Sample	Long: 87° 39′ 36″.478 Lat: 41° 50′ 03″.788	576.90	3.7	13.8	7.5	21 April 2004
SF-2004-B08	Core Sample	Long: 87° 39′30″.410 Lat: 41° 49′ 57″.137	576.85	7.4	6.6	4.0	21 April 2004
SF-2004-B09	Core Sample	Long: 87° 39′ 46″.526 Lat: 41° 49′ 51″.171	576.83	12.0	9.0	6.0	21 April 2004
SF-2004-B10	Core Sample	Long: 87° 39′ 26″.522 Lat: 41° 49′ 48″.862	577.48	3.5	12.5	8.9	22 April 2004
SF-2004-B11	Core Sample	Long: 87°39′ 27.010 Lat: 41° 49′ 37″.697	577.26	4.5	11.0	7.0	22 April 2004
SF-2004-B12	Core Sample	Long: 87° 39′ 29″.549 Lat: 41° 49′ 33″.310	577.44	2.2	15.8	9.0	22 April 2004
SF-2004-B13	Core Sample	Long: 87° 39′26″.502 Lat: 41° 49′ 30″.173	577.39	16.5	5.5	2.0	22 April 2004
SF-2004-G01	Grab Sample	Long: 87° 39′ 52″.250 Lat: 41° 50′ 22″.803	577.27	NR	N/A	N/A	20 April 2004
SF-2004-G02	Grab Sample	Long: 87° 39′ 48″.116 Lat: 41° 50′ 15″.993	577.17	9.3	N/A	N/A	20 April 2004
SF-2004-G03	Grab Sample	Long: 87° 39′ 35″.357 Lat: 41°50′ 02″.876	576.97	4.0	N/A	N/A	21 April 2004
SF-2004-G04	Grab Sample	Long: 87° 39′ 46″.526 Lat: 41° 49′ 51″.171	576.83	12.0	N/A	N/A	21 April 2004
SF-2004-G05	Grab Sample	Long: 87° 39′ 26″.522 Lat: 41° 49′ 48″.862	577.48	3.5	N/A	N/A	22 April 2004

(a) – Water surface elevation is given relative to National Geodetic Vertical Datum 1929 (NGVD) $NR = not \ recorded; NA = not \ applicable$

Depth of water was determined using a tape measure. Water surface elevation for each of the sampling locations was calculated through interpolation between several gauging stations. Water surface elevations at the Willow Springs gauge and the Chicago River Controlling Works (CRCW)-River gauge were provided by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). Water surface elevations were provided in "feet City of Chicago Datum (CCD)." The water surface elevation at the mouth of SFSB was determined by interpolating between these two stations. Additional water surface elevations had been collected at the Racine Avenue Pump Station. The sampling location water surface elevations were calculated by interpolating the water surface elevations at the mouth of the SFSB and at the Racine Avenue Pump Station. Water surface elevations were then converted from CCD to NGVD and are recorded in **Table 2-1**. Water surface elevation data provided by MWRDGC are presented in **Appendix A**.

Once the core samples were brought to the surface, the plastic core liner was extruded from the core barrel and the sediments were prepared for collection. Color photographs of each sample were taken and are located in **Appendix B**.

A CDM engineer classified the sediments according to the USCS (ASTM D2487-00) and CDM Standard Operating Procedure (SOP) 3-5, *Lithologic Logging*, by recording the classification on a field boring log form (see **Appendix C** for completed forms). The sediment samples were also screened in the field by the CDM engineer with a photoionization detector (PID) to detect the presence of volatile organic compounds (VOCs). Sediment from each discrete sample interval was placed in a zip lock bag, and a PID reading was taken after approximately 5 minutes.

Samples to be submitted for VOC and TCLP VOC analysis were prepared by filling an unpreserved 4-ounce glass jar with no headspace. The region of the sub-sample that produced the highest PID reading was chosen for VOC analysis.

Samples for bulk chemistry analysis and TCLP and hazardous waste analysis, with the exception of samples analyzed for VOCs, were submitted after compositing the sub-samples in a decontaminated stainless steel bowl and filling 9-ounce amber glass jars containing no preservatives. The sediment sample that was selected for analytical testing was based on the highest PID reading within that core. The depth of the 2-foot interval chosen for analytical sampling was recorded. Sediment within the chosen 2-foot interval was homogenized by mixing in a clean stainless steel bowl, then placed into sample jars. During the onset of sampling, core samples SF-2004-B01 and SF-2004-B02 were collected and the length of the core was homogenized. The USACE representative on board noted that the 2-foot interval with the highest PID reading should be homogenized, not the entire length of the core. CDM returned to location SF-2004-B01 and collected another sample (SF-2004-B01A), which was submitted for analysis in place of SF-2004-B01. Re-sampling was not performed at location SF-2004-B02.

Grab samples were homogenized at each sampling location using decontaminated stainless steel mixing equipment. The homogenized grab samples were analyzed for bulk chemistry parameters.

Tables identifying which samples were analyzed by which analytical tests are shown in **Tables 2-2 and 2-3**.

Table 2-2 **Bulk Chemistry Parameters and Number of Samples Submitted** South Fork South Branch, Chicago River, April 2004

Parameter	Analysis Method	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05 ^(g)	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
Metals (f)	6010B (a)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Mercury	7471	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Chromium (hexavalent, includes neutral leach)	Standard Method 3500	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cyanide, Total	EPA 335.4 (b)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Total Phosphorus	EPA 365.2 (c)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Oil & Grease	EPA 1664 (e)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Ammonia Nitrogen	EPA 350.2 (c)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Chemical Oxygen Demand	EPA 410.4 (b)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Total Organic Carbon	9060 ^(a)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Semivolatiles (SVOCs) (except PNAs)	8270 ^(a)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Polynuclear Aromatic Hydrocarbons (PNAs)	8270 selective ion monitoring (SIM)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Polychlorinated Biphenyls (PCBs)	8082 ^(a)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
% Volatile Solids	EPA 160.4 (c)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
% Total Solids	EPA 160.3 (c)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Volatiles (VOCs)	8260B (a)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Particle-Size Analysis w/hydrometer	ASTM D421-85 ASTM D422 ^(d)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Specific Gravity of Soil Solids by Water Pycnometer	ASTM D854-00 (d)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

- Notes: (a) EPA publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition
 - (b) EPA 600/R-93-100, Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993
 - (c) EPA 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, March 1983
 - (d) Annual book of American Society for Testing and Materials Standards (ASTM) Section 4, 2003
 - (e) EPA 821/B-94-004b, Method 1664: N-Hexane Extractable Material (HEM) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM) by Extraction and Gravimetry (Oil and Grease and Total Petroleum Hydrocarbons) April 1995

- (f) Metals: arsenic, barium, cadmium, copper, lead, mercury, nickel, selenium, silver, and zinc.
- (g) Duplicate of sample SF-2004-B05

Table 2-3

TCLP and Hazardous Waste Parameters and Number of Samples Submitted South Fork South Branch, Chicago River, April 2004

Parameter	Analysis Method (a)	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05 (b)	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
TCLP Volatiles	1311/8260B	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
TCLP RCRA Metals	1311/6010B/7000A	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
TCLP Semivolatiles	1311/8270C	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
TCLP Herbicides and Pesticides	1311/8151/8081A	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
Soil and Waste pH	9045C	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
Flash Point	1010	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
Reactive Cyanide	Chapter 7, 7.3.3.2	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
Reactive Sulfide	Chapter 7, 7.3.4.2	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
Paint Filter	9095A	X	X	X	X	X	X	X	X	X	X	X	X	X	X					

Notes:

- (a) EPA publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition
- (b) Duplicate of sample SF-2004-B05

TCLP = Toxicity Characteristic Leaching Procedure

2.3.4 Investigation Derived Waste

All sampling and processing equipment that came into direct contact with the sediment samples were decontaminated between sampling locations. The sediment catcher located at the bottom of the vibracore, the ponar dredge, and the mixing bowls were thoroughly decontaminated between each sample with a Liquinox® solution.

Investigation-derived waste (IDW) produced during sampling was handled in accordance with CDM SOP 2-2, *Guide to Handling of Investigation-Derived Waste*. All non-aqueous waste generated, such as personal protective equipment (PPE), were placed into high-density polyethylene (HDPE) bags. The solid waste generated during field activities was disposed of in conventional waste containers as non-hazardous waste. All aqueous IDW, rinsate, and extra sediment volume collected during field activities were returned to the waterway in the location where it had been collected.

2.4 Laboratory Analysis

The samples were sent on the day of collection via overnight courier to Mitkem Corporation of Warwick, Rhode Island. Mitkem Corporation has current USACE, North Western Division (NWD) laboratory validation.

One hundred forty-five containers of sediment were sent to the laboratory for analysis. All grab samples were analyzed for bulk chemistry, consisting of the parameters and analysis methods listed in **Table 2-2**. Sediment core samples were collected and analyzed for the bulk chemistry parameters listed in **Table 2-2**, as well as the TCLP and hazardous waste parameters listed in Table 2-3. Laboratory analytical results are identified in **Appendix D** and summarized in Section 3.2.

Section 3 Results of the Field Investigation

3.1 Subsurface Conditions

Subsurface conditions at the site are described based on field observations. Boring logs (refer to **Appendix C**) were compiled using data collected during the on-site subsurface investigation.

Sediment typically consisted of clay that was wet, soft, had little fine sand and silt, and contained organics. Sandy material was present in SF-2004-B04 (shallow), SF-2004-B07 (shallow), SF-2004-B08 (shallow and deep), SF-2004-B09 (shallow), SF-2004-B10 (predominant), SF-2004-B11 (shallow), and SF-2004-B13. Gravel was present in much of SF-2004-B06.

Most sediment had an organic odor, with some locations exhibiting a hydrocarbon odor. The sediment color was typically black, as seen in the photographs shown in **Appendix B**. An oily sheen was observed in core SF-2004-B06 and grab sample SF-2004-G05. Hair and foil were present in many cores, while trash, wood, glass, and bone fragments were present in a small number of cores.

3.2 Analytical Sediment Results

Table 3-1 lists bulk chemistry compounds that were detected in the sediment samples. **Table 3-2** is a summary of TCLP and hazardous waste characterization results.

Consistent with previous sample results in 1994, 1995, and 2000, polynuclear aromatic hydrocarbons (PNAs or PAHs) were detected in many samples in the parts per million (ppm) range. Other semi-volatile organic compounds (SVOCs), VOCs, polychlorinated biphenyls (PCBs), oil and grease, and metals were detected in the samples.

Sediment analytical results were compared to EPA TCLP regulatory levels. TCLP and Hazardous Waste regulatory levels as well as maximum concentrations detected are listed in **Table 3-2.** Parameters that have exceeded the regulatory criteria appear in "**BOLD**". See **Appendix D** for a complete list of analytical results with comparisons to regulatory levels. None of these detections exceed EPA TCLP regulatory levels; in fact, none were within an order of magnitude of the criteria. Ignitability (flash point) was identified in one sample: SF-2004-B02 at 124 degrees Fahrenheit. Cyanide and sulfide reactivity were compared to EPA SW-846 levels; reactive cyanide was not detected, but there were eleven samples with reactive sulfides results above the listed criteria of 500 mg/kg (EPA SW-846 Chapter 7 Section 7.3.4.2). Total PCB levels were compared to the Toxic Substances Control Act (TSCA) regulatory level and there were no exceedances. Regulatory criteria for pH were not exceeded for any samples and there were no regulatory criteria available for the paint filter test.

Table 3-1
Summary of Bulk Chemistry Results

	Analyte	Number of Detections	Number of Samples Analyzed ^(a)	Minimum Concentration Detected	Maximum Concentration Detected	Location of Highest Detection ^(b)	Average Concentration or Result
	Vinyl Chloride	1	19	19	19	B03	11 ^(e)
	Acetone	19	19	8 J	2700	B09	543
	Carbon disulfide	11	19	6	37 J	B05	13 ^(e)
	Methylene chloride	15	19	2 JB	63 DJB	B12DL	9 ^(e)
	2-Butanone (MEK)	15	19	15	1500 E	D05	259 ^(e)
	cis-1,2-Dichloroethene	1	19	6 J	6 J	B03	10 ^(e)
	Chloroform	12	19	1 J	26 DJ	B12DL	9 ^(e)
	Benzene	11	19	4 J	31	B02	11 ^(e)
	Toluene	16	19	2 J	8000 D	G02DL	471 ^(e) 9 ^(e)
	Chlorobenzene	7	19	2 J	16	B13	25 ^(e)
	Ethylbenzene	10	19 19	6 J 3 J	87	B12	107 ^(e)
VOCs	o-xylene	13	19	1 J	630 E 620	B02 B02	107 (e)
	p-xylene Xylenes (total)	13	19	4 J	1200	B02	275 ^(e)
EFA 8200B	Isopropylbenzene	12	19	2 J	64	B12	25 ^(e)
	n-Propylbenzene	11	19	3 J	190	B12	52 ^(e)
	1,3,5-Trimethylbenzene	16	19	2 J	770	B12	192 ^(e)
	1,2,4-Trimethylbenzene	17	19	1 J	2000 E	B12	222 ^(e)
	sec-butylbenzene	11	19	4 J	240	B12	77 ^(e)
	Cymene	16	19	2 J	820 E	B12	154 ^(e)
	1,4-Dichlorobenzene	9	19	4 J	200	B10	37 ^(e)
	n-Butylbenzene	14	19	3 J	620	B12	178 ^(e)
	1,2-Dichlorobenzene	2	19	3 J	11	B05	10 ^(e)
	Naphthalene	18	19	3 J	670	B10	143 ^(e)
	Phenol	1	19	110 J	110 J	B02	2630 ^(e)
	1,4-Dichlorobenzene	14	19	110 J	2800	B11	1876 ^(e)
	1,2-Dichlorobenzene	4	19	130 J	550 J	B06	2405 ^(e)
SVOCs	4-Methylphenol	9	19	250 J	5200	G02	2132 ^(e)
(μg/kg) by	4-Chloroaniline	1	19	1900	1900	B02	2724 ^(e)
EPA 8270C	Dibenzofuran	16	19	83 J	6400	B13	2408 ^(e)
(except PNAs)	Carbazole	11	19	500	9900 D	B13DL	3363 ^(e)
PNAS)	Di-n-butylphthalate	2	19	83 J	560 J	B02	2635 ^(e)
	Butylbenzylphthalate	3	19	340 J	880 DJ	G02DL	2646 ^(e)
	bis(2-Ethylhexyl)phthalate	18	19	2500	41,000	B06	17489 ^(e)
	Di-n-octylphthalate	5	19	370 J	1300 DJ	B02DL	2324 ^(e)
	Arsenic	19	19	2.6	35.2	B09	17.3
	Barium	19	19	43	659	B12	349
	Cadmium	19	19	0.89	28.5	B01a	11.6
	Chromium	19	19	30.8 N	4440 N	B02	688
Metals	Copper	19	19	79.8	534	D05	303
(mg/kg)	Lead	19	19	136	2820	B09	1233
(3 5)	Nickel	19	19	11.4	247	D05	95.9
	Selenium	19	19	0.63 B	6.8	D05	3.59
	Silver	18	19	2.3	70.4	B07	22.2 ^(e)
	Zinc	19	19	207	6600	B09	2690
	Mercury	19	19	0.72	15.9	B10	6.34

Table 3-1 (Continued)

Summary of Bulk Chemistry Results

	Analyte	Number of Detections	Number of Samples Analyzed ^(a)	Minimum Concentration Detected	Maximum Concentration Detected	Location of Highest Detection ^(b)	Average Concentration or Result
	Naphthalene	19	19	120	8600 D	B13DL	2157
	2-Methylnaphthalene	19	19	170	18,000	D05	6024 ^(d)
	Acenaphthylene	19	19	47	2600	B01A	609
	Acenaphthene	19	19	180	8,900	B11	2682 ^(d)
	Fluorene	19	19	220	9100 D	B13	3448 ^(d)
	Phenanthrene	19	19	2000	100,000 D	G01DL	25658 ^(d)
	Anthracene	19	19	370	12,000 D	B13DL	4201 ^(d)
	Fluoranthene	19	19	3,800	110,000 D	B13DL	30316 ^(d)
PNAs by 8270 SIM	Pyrene	19	19	3,100	93,000 D	B13DL	23374 ^(d)
8270 SIM	Benzo(a)anthracene	19	19	1100	34,000 D	B13DL	10168 ^(d)
	Chrysene	19	19	1100	60,000 D	B13DL	15379 ^(d)
	Benzo(b)fluoranthene	19	19	1400	40,000 D	B13DL	12647 ^(d)
	Benzo(k)fluoranthene	19	19	470	15,000 D	B13DL	4319 ^(d)
	Benzo(a)pyrene	19	19	1000	28,000 D	B13DL	8442 ^(d)
	Indeno(1,2,3-cd)pyrene	19	19	450	16,000 D	B13DL	3490 ^(d)
	Dibenz(a,h)anthracene	19	19	140	3800	B13	1026
	Benzo(g,h,i)perylene	19	19	1200	18,000 D	B13DL	3336 ^(d)
PCBs	Aroclor-1248	17	19	100 P	8000	B10	3233 ^(e)
(µg/kg)	Aroclor-1260	18	19	360	3300 P	B03	1607 ^(e)
	Total volatile solids (wt %)	19	19	1.8 B	46 B	B09	16.3
	Total Solids (%)	19	19	36	79	B13	52.8
Other	Phosphorus, Total (as P)	17	19	540	17,000	D05	5787 ^(e)
Inorganics	Total organic carbon	19	19	5900	>12,000	(c)	97205
(mg/kg	Nitrogen, ammonia	19	19	62	13,000	B02	2891
unless noted)	Chemical oxygen demand	16	19	430	6,600	D05	2221
	Chromium, hexavalent	0	19	ND	ND	ND	N/A
	Oil & Grease, total	19	19	1300	20,000	B02	7984
	Cyanide	17	19	0.49 BN	9.3 N	B02/B09	3.26 ^(e)
	Gravel	19	19	0	41.2	B06	5.5
	Coarse Sand	19	19	0	19.5	B13	2.9
	Medium Sand	19	19	1.6	47.1	B13	8.8
(%)	Fine Sand	19	19	6.7	86.7	G05	38.6
	Silt	19	19	0.1	53.1	B04	25.9
	Clay	19	19	2.9	37	B04	18.1
Specific Gravity	Specific Gravity t been validated, but a quality ass	14	14	1.44	2.57	G05	2.09

Data have not been validated, but a quality assessment has been performed by USACE (See Appendix E)

Target analytes not listed were not detected in any samples. Full data tables are in Appendix D.

- (a) Including one field quality control duplicate sample
- (b) Sample identification name has SF-2004- preceding the location. B = (boring) core sample
- (c) Several samples with TOC results > 12,000
- (d) PNA results by method 8270C were used when method 8270C SIM results exceeded calibration range
- (e) Average concentration incorporates reporting limit value for non-detected analytes
- B = detected in the blank sample (except for metals/inorganics, where B = concentration below reporting limit)
- D = diluted
- DL = sample analyzed after dilution
- E = exceeds calibration range (for metals E = estimated concentration due to interference)
- J = estimated concentration
- N = sample recovery outside of control limits
- N/A = Not Applicable
- ND = No Detections
- P = the difference for detected concentration of an Aroclor target analyte is greater than 25% between the two GC columns.

Table 3-2 Summary of TCLP and Hazardous Waste Characterization Results

	Analyte	Number of Detections	Number of Samples Analyzed ^(a)	Minimum Concentration Detected	Maximum Concentration Detected	Location of Highest Detection ^(b)	TCLP and Hazardous Waste Criteria	Average Concentration
	Vinyl Chloride	0	14	ND	ND	N/A	200	N/A
	1,1-Dichloroethene	0	14	ND	ND	N/A	700	N/A
	2-Butanone	12	14	2 J	38	B08	200,000	16 (e)
	Chloroform	0	14	ND	ND	N/A	6,000	N/A
TCLP VOCs	Carbon Tetrachloride	0	14	ND	ND	N/A	500	N/A
(µg/L)	1,2-Dichloroethane	0	14	ND	ND	N/A	500	N/A
	Benzene	0	14	ND	ND	N/A	500	N/A
	Trichloroethene	0	14	ND	ND	N/A	500	N/A
	Tetrachloroethene	0	14	ND	ND	N/A	700	N/A
	Chlorobenzene	1	14	9	9	B13	100,000	5.3 ^(d)
	1,4-Dichlorobenzene	1	14	2 J	2 J	B13	7,500	9.4 ^(d)
	2-Methylphenol	0	14	ND	ND	N/A	200,000	N/A
	4-Methylphenol	1	14	2 J	2 J	B13	200,000	9.4 ^(d)
	Hexachloroethane	0	14	ND	ND	N/A	3,000	N/A
	Nitrobenzene	0	14	ND	ND	N/A	2,000	N/A
TCLP	Hexachlorobutadiene	0	14	ND	ND	N/A	500	N/A
SVOCs	2,4,6-Trichlorophenol	1	14	1 J	1 J	B13	2,000	9.3 ^(d)
(µg/L)	2,4,5- Trichlorophenol	1	14	1 J	1 J	B13	400,000	18.6 ^(d)
	2,4-Dinitrotoluene	1	14	1 J	1 J	B13	130	9.3 ^(d)
	Hexachlorobenzene	0	14	ND	ND	N/A	130	N/A
	Pentachlorophenol	0	14	ND	ND	N/A	100,000	N/A
	Pyridine	1	14	27	27	B13	5,000	11.2 ^(d)
	gamma-BHC (Lindane)	0	14	ND	ND	N/A	400	N/A
	Heptachlor	0	14	ND	ND	N/A	8	N/A
	Heptachlor epoxide	0	14	ND	ND	N/A	8	N/A
TCLP	Endrin	0	14	ND	ND	N/A	20	N/A
Pesticides	Methoxychlor	0	14	ND	ND	N/A	10,000	N/A
	Toxaphene	0	14	ND ND	ND	N/A	500	N/A
	Chlordane	0	14	ND ND	ND	N/A	30	N/A
TCLP	2,4-D (Dichlorophenoxyacetic Acid)	0	14	ND	ND	N/A	10,000	N/A
Herbicides	Silvex (2,4,5-TP)	0	14	ND	ND	N/A	1,000	N/A
	Arsenic	14	14	9.7 B	53	B09	5,000	27.3
	Barium	14	14	595 E	944 E	B09	100.000	680
	Cadmium	14	14	2.5 B	9	B06	1.000	4.1
TCLP	Chromium	14	14	10.2 B	126	B06	5.000	40.7
Metals	Lead	13	14	7.4 B	154	B07	5,000	56.3 ^(d)
(μg/L)	Mercury	3	14	0.15 B	0.22 B	B12	200	0.11 ^(d)
	Selenium	2	14	12 B	12.4 B	B04	1,000	9.5 ^(d)
	Silver	14	14	10.5 B	31	B06	5,000	16.8
Cyanide (mg/kg)	Reactive Cyanide	0	13	ND	ND	N/A	250 ^(c)	N/A
Sulfide (mg/kg)	Reactive Sulfide	13	13	42	8,200	B02	500 ^(c)	2664
Flashpoint	Ignitability (degrees F)	1	13	ND	124	B02	<140°	N/A
рН	pH (standard units)	14	14	7.6	8.5	B10	≤2 or ≥12.5	8 8
Paint Filter	Paint Filter (Free liquid) (mL/100 g)	3	13	4	13	B10	N/A	2.8 ^(d)

Data have not been validated, but a quality assessment has been performed by USACE

- (a) Including one field quality control duplicate sample
- (b) Sample identification name has SF-2004- preceding the location. B = (boring) core sample
- (c) Per SW-846 Chapter 7 Section 7.3.3.2, 7.3.4.2.
- (d) Average concentration includes reporting limit value for undetected samples
- $B = detected \ in \ the \ blank \ sample \ (except \ for \ metals/inorganics, \ where \ B = concentration \ below \ reporting \ limit)$
- $E = exceeds \ calibration \ range \ (for \ metals \ E = estimated \ concentration \ due \ to \ interference)$
- J = estimated concentration
- N/A = Not Applicable

3.3 Quality Assurance/Quality Control (QA/QC)

CDM performed all field sampling activities in accordance with the USACE-approved SAP (CDM 2004) that included project-specific QA/QC requirements. Decontamination, sampling methods, and all other procedures used during field work were conducted as described in the SAP. A USACE representative was onsite observing field work during the entire sampling event.

As discussed in Section 2.3.3, core samples SF-2004-B01 and SF-2004-B02 were collected and the length of the core was homogenized. The USACE representative on board noted that the 2-foot interval with the highest PID reading should be homogenized, not the entire length of the core; however, CDM returned to location SF-2004-B01 because it had a higher PID reading at depth compared to the shallower intervals and collected another sample (SF-2004-B01A) that was submitted for analysis in place of SF-2004-B01. The PID readings from various sample depths at SF-2004-B02 were not significantly different so re-sampling was not performed.

Data quality assessment was not part of the CDM SOW for this project. Rather, data quality assessment has been performed by USACE and a Memorandum for Record detailing this assessment is included in **Appendix E** of this final report. USACE concluded the following:

- Matrix interference existed for SVOCs
- The reported data meet the specifications of the SOW
- The data are deemed useable for the intended purposes, with certain data qualified as estimated concentrations

Mitkem Corporation recorded sample receipt information such as cooler or sample temperature, condition of sample containers, the presence of custody seals, and chain-of-custody documentation. Cooler custody seals were present and intact upon arrival at the laboratory, cooler temperatures were within $4^{\circ} \pm 2^{\circ}$, and no login discrepancies were found.

The following QC observations are made following review of the sample delivery group (SDG) case narrative, field QC sample results, and USACE Data Quality Analysis:

LCS, surrogate, and MS/MSD percent recoveries used to assess accuracy encountered matrix interferences as discussed in the SDG narrative (Appendix D) and further below. Duplicate relative percent difference (RPD) results used to assess precision were typically within criteria as summarized in the SDG narrative; field duplicate results are discussed further below.

- The majority of test methods employed by the laboratory corresponded to those listed in the SOW and CDM SAP, with the exception of hexavalent chromium, total cyanide, ammonia nitrogen, chemical oxygen demand, % total solids and total organic carbon. Since several methods listed in the Sampling plan applied only to aqueous media, (COD by 410.4, Ammonia Nitrogen by 350.2, Hexavalent Chromium by 3500 and TOC by 9060) Mitkem analyzed the samples by equivalent methods for sediment or soil matrix for the applicable target parameters. COD and Ammonia Nitrogen tests were performed in accordance with CFR 40 Part 136 Subchapter D. Mitkem analyzed the samples for TOC in soil by the Loyd Kahn modification to method 415.1, which specifically addresses soil samples, and analyzed hexavalent chromium by SW-846 Methods 3060/7196A, which also specifically addresses soil samples.
- For most samples, dilution was required for VOCs, SVOCs, and PNAs analyses because of the relatively high concentrations identified in these sediment samples. Dilution was required to obtain results within the calibration range. This increased the reported detection limit for non-detect results for these samples. In some cases, this affected the ability of certain analytes for certain QC tests to be detected.
- One matrix spike (MS)/matrix spike duplicate (MSD) sample was collected in the field for analysis to help assess site-specific matrix interference. Matrix interference was identified and described by the laboratory in the sample delivery group (SDG) narrative (**Appendix D**) for VOCs, SVOCs, PCBs, and inorganics (chromium and cyanide). Some MS and MSD recoveries were low, while others were high, not clearly indicating a particular directional bias. Because laboratory control standard (LCS) results were typically within QC limits but MS and/or MSD results were not in certain cases, this indicates matrix interference rather than analytical error.
- One holding time was missed for VOCs, for sample SF-2004-B03 for the third dilution. The initial two analyses were completed within holding times, but due to the multiple dilutions required the final analysis was performed slightly outside of the holding time.
- The holding time of 24 hours, as listed in the SAP was exceeded for 7 flashpoint samples, 4 soil and waste pH samples, 9 reactive cyanide samples and 7 reactive sulfide samples. There is no specific 24-hour holding time listed in the analytical method for these four EPA SW-846 methods. Instead, the analytical method for EPA SW-846 Method 9045, 7.3.3.2, and 7.3.4.2, states that samples should be analyzed as soon as possible (while maintaining the samples under refrigeration and in the dark, which occurred). CDM typically interprets this to mean 24 hours, which is what was included in Table 6 of the SAP (January 2004); however, 24 hours is not a specific EPA requirement.

For flashpoint, the CDM SAP Table 6 holding time was in error because no holding time, not even "as soon as possible," is listed in the analytical method (SW 1010).

According to EPA MICE (Methods Information Communication Exchange), one week is generally considered the acceptable holding time for pH on a soil/solid sample. The same one week time period could also be reasonably applied to flashpoint analyses, as long as the samples were stored in the recommended manner. Holding times for the total analysis methods could be applied to the reactivity methods. Based on the information from the EPA MICE service, one week would be considered acceptable for the pH, flashpoint and reactive sulfide analyses, with two weeks considered reasonable for reactive cyanide because the total cyanide holding time is 14 days (SAP Table 5).

Mitkem performed all pH and flashpoint analyses within one week from sample collection. The reactive sulfide analyses were performed within 14 days or less from collection, which is within a factor of two of the EPA MICE-suggested one week holding time for the total sulfide test. Data validation guidelines generally consider analyses performed within a factor of two of the holding time to be usable as estimates. Because EPA has serious doubts about the reliability of the reactivity analyses described in EPA SW-846 Chapter 7, the data should be considered to be estimates ("J" qualifier) regardless of holding time.

Reactive cyanide analyses were performed within 14 days with the exception of three samples analyzed on the 15th day. All samples analyzed within 14 days are within the EPA's recommended holding time for the total cyanide analysis method. The three samples analyzed on the 15th day were analyzed within a factor of two of the holding time, and should also be considered estimates in the same manner as reactive sulfide. Total cyanide analyses were also performed on these samples and the total cyanide results ranged from 0.49 to 9.3 mg/kg, all below the SW-846 Section 7.3.3.2 interim threshold level of 250 mg/kg.

• Actual detection limits exceeded the required detection limit for several test methods. For VOCs, the detection limits generally were not met due to elevated moisture in the sediment samples that caused elevated reporting limits. The required detection limits for SVOCs and PCBs were not met due to samples that were analyzed at dilution, as discussed previously. These samples required analysis at dilution due to concentrations of target and nontarget analytes.

- Surrogate recoveries in some samples were high for VOCs, most likely due to matrix interference; however, when reanalyzed at dilution, results were typically within QC limits.
- SVOC surrogate recoveries in most of the samples were within QC limits, except for 1 or 2 of the 6 surrogates in about one-third of the samples. PCB surrogate recoveries were within QC limits except for one surrogate with coeluting (i.e., overlapping) interferences.
- TCLP QC results for virtually all analyses were within QC limits.
- One field duplicate sediment sample (SF-2004-D05) was collected to assess the homogeneity of sediment. It was collected from the same homogenization bowl as SF-2004-B05, except the sub-sample for VOC analysis was collected prior to homogenization. Results generally showed the same analytes detected in both the original and duplicate, with concentrations generally within two times of each other, indicating some heterogeneity exists. Results for VOCs were slightly more variable, which could be expected considering subsamples for VOCs were not homogenized to avoid volatilization loss.
- Other field QC samples such as trip blanks, USACE QA samples, and field/rinsate blank samples were not included in the scope of work for this project and are not considered necessary for the proposed sampling plan along the length of the project area, based on the size and the needs of the project. USACE Engineer Manual EM 200-1-6 (Chemical Quality Assurance for Hazardous, Toxic, and Radioactive Waste [HTRW] Sites) Section 1-7 (Omission of QA Samples) allows this for certain projects.

Regarding analytes and concentrations detected, sample results were generally comparable (i.e., had similar analytes detected, had concentrations within an order of magnitude, and had no apparent major outliers) both amongst each other and compared to previous sampling results from 1994 to 2000.

The objective of this sample collection and analysis effort was to assess whether the sediment in Chicago River (SFSB) is deemed to be hazardous per exceedance of TCLP and other hazardous waste criteria. According the USACE Data Quality Assessment, the TCLP data are generally within the QC limits and the analyte concentrations in the sediment were significantly less than the TCLP regulatory limits. The laboratory results appear to be suitable for identifying hazardous toxicity characteristics within the sediment samples. However, caution should be taken when using the results to determine hazardous waste characteristics such as ignitability, reactivity, or corrosivity.

Section 4 References

Camp Dresser & McKee, 2004. Final Sampling and Analysis Plan South Fork South Branch, Chicago River, Chicago, Illinois.

TopoZone 2003. USGS Englewood Quad (UTM WGS84/NAD83). http://www.topozone.com/quadinfo.asp.

United States Army Corps of Engineers. Engineer Manual EM-200-1-6. *Chemical Quality Assurance for Hazardous, Toxic, and Radioactive Waste (HRTW) Sites.*

_______, 2003. Scope of Work for Collection and Analysis of Sediment Samples at South Fork South Branch, Chicago River.

United States Environmental Protection Agency, *Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods.* Publication SW-846, 3rd Edition, April 1998.

USEPA, 2003. "October 2000 and August 2002 survey of sediment contamination in the Chicago River, Chicago, Illinois." USEPA Great Lakes National Program Office.

Appendix A

Water Surface Elevation Data

20:00	00.00 +00.2-1dA-02			
0 00:15 (CRCW - Lake)		(CRCW - River)		(Willow Springs)
ECRCWGG1\$PV		ECRCWGG2\$PV		EWILSPNS\$PV
Elevation	Time	Elevation	Time	Elevation
-0.73	17-APR-2004 00:00:00	-1.97	17-APR-2004 00:00:00	-2.10
-0.80	17-APR-2004 00:15:00	-1.93	17-APR-2004 00:15:00	-2.10
-0.73	17-APR-2004 00:30:00	-1.97	17-APR-2004 00:30:00	-2.07
-0.80	17-APR-2004 00:45:00	-1.93	17-APR-2004 00:45:00	-2.07
-0.73	17-APR-2004 01:00:00	1.97	17-APR-2004 01:00:00	-2.10
-0.93	17-APR-2004 01:15:00	-1.93	17-APR-2004 01:15:00	-2.73
-0.73	17-APR-2004 01:30:00	-2.00 1.03	17-APR-2004 01:30:00	-2.13
-0.95	17-APR-2004 01:45:00	00.0	17-APR-2004 01:43:00	-2.07
6.93	17-APR-2004 02:00:00	-1 93	17-APR-2004 02:00:00	-2.07
-0 93	17-APR-2004 02:30:00	-193	17-APR-2004 02:30:00	-2 07
0.00	17-APR-2004 02:35:00	-2.00	17-APR-2004 02:45:00	-2 07
-0.87	17-APR-2004 03:00:00	-1.97	17-APR-2004 03:00:00	-2.13
-0.80	17-APR-2004 03:15:00	-2.00	17-APR-2004 03:15:00	-2.07
-0.73	17-APR-2004 03:30:00	-1.93	17-APR-2004 03:30:00	-2.13
-0.93	17-APR-2004 03:45:00	-1.93	17-APR-2004 03:45:00	-2.07
-1.13	17-APR-2004 04:00:00	-1.93	17-APR-2004 04:00:00	-2.07
-1.17	17-APR-2004 04:15:00	-1.90	17-APR-2004 04:15:00	-2.13
-0.80	17-APR-2004 04:30:00	-1.93	17-APR-2004 04:30:00	-2.07
-0.67	17-APR-2004 04:45:00	-1.93	17-APR-2004 04:45:00	-2.07
-0.50	17-APR-2004 05:00:00	-1.35	17-APR-2004 05:00:00 17-APR-2004 05:15:00	70.67
080	17-APR-2004 05:30:00	-1.87	17-APR-2004 05:30:00	-2 13
-1.00	17-APR-2004 05:45:00	-1.87	17-APR-2004 05:45:00	-2.07
-0.80	17-APR-2004 06:00:00	-1.80	17-APR-2004 06:00:00	-2.07
-0.67	17-APR-2004 06:15:00	-1.93	17-APR-2004 06:15:00	-2.07
-1.13	17-APR-2004 06:30:00	-2.00	17-APR-2004 06:30:00	-2.07
-1.37	17-APR-2004 06:45:00	-1.97	17-APR-2004 06:45:00	-2.00
02.1-	17-APR-2004 07:00:00	1.93	17-APR-2004 07:00:00	-2.00
1.00	17-APR-2004 07:13:00	1.93	17-APR-2004 07:13:00	-2.00
-1.13	17-APR-2004 07:45:00	-1.90	17-APR-2004 07:45:00	-2.00
-0.47	17-APR-2004 08:00:00	-1.93	17-APR-2004 08:00:00	-2.00
-0.50	17-APR-2004 08:15:00	-1.87	17-APR-2004 08:15:00	-2.00
-0.93	17-APR-2004 08:30:00	-1.87	17-APR-2004 08:30:00	-2.00
-1.07	17-APR-2004 08:45:00	-1.87	17-APR-2004 08:45:00	-1.93
-1.27	17-APR-2004 09:00:00	-1.80	17-APR-2004 09:00:00	-2.07
-0.93	17-APR-2004 09:15:00	1.87	17-APR-2004 09:15:00	2.00
-1.20	17-APR-2004 09:30:00	-1.87	17-APR-2004 09:30:00	-2.07
-0.73	17-APR-2004 10:00:00	-1.90	17-APR-2004 10:00:00	-2.07
-0.73	17-APR-2004 10:15:00	-1.87	17-APR-2004 10:15:00	-2.07
-0.73	17-APR-2004 10:30:00	-1.92	17-APR-2004 10:30:00	-2.07
-1.07	17-APR-2004 10:45:00	-2.00	17-APR-2004 10:45:00	-2.00
-0.60	17-APR-2004 11:00:00	-2.03	17-APR-2004 11:00:00	79.1-
0.1-	17-APR-2004 11:15:00	-2.00	17-APR-2004 11:15:00	-2.00
1.00	17-APR-2004 11:45:00	-2.00	17-APR-2004 11:45:00	-2.00
-0.53	17-APR-2004 12:00:00	-2.03	17-APR-2004 12:00:00	-2.07
-0.73	17-APR-2004 12:15:00	-1.93	17-APR-2004 12:15:00	-2.07
-0.73	17-APR-2004 12:30:00	-2.00	17-APR-2004 12:30:00	-2.07
-1.17	17-APR-2004 12:45:00	-1.97	17-APR-2004 12:45:00	-2.13
-0.73	17-APR-2004 13:00:00	-2.00	17-APR-2004 13:00:00	-2.00
-0.60	17-APR-2004 13:15:00	-2.00	17-APR-2004 13:15:00	-2.00
-0.47	17-APR-2004 13:45:00	-2.00	17-APR-2004 13:45:00	-2.00
-0.73	17-APR-2004 14:00:00	-2.00	17-APR-2004 14:00:00	-2.07
-0.27	17-APR-2004 14:15:00	-2.00	17-APR-2004 14:15:00	-2.13
	CRCW - Lake		Time 17-APR-2004 00:00:00 17-APR-2004 00:00:00 17-APR-2004 00:00:00 17-APR-2004 00:00:00 17-APR-2004 00:00:00 17-APR-2004 01:00:00 17-APR-2004 01:00:00 17-APR-2004 01:00:00 17-APR-2004 01:00:00 17-APR-2004 02:00:00 17-APR-2004 03:00:00 17-APR-2004 03:00:00 17-APR-2004 03:00:00 17-APR-2004 03:00:00 17-APR-2004 03:00:00 17-APR-2004 03:00:00 17-APR-2004 10:00:00 17-APR-2004 11:00:00	Time

	(CRCW - Lake)		(CRCW - River)		EWII SPNS DV
Time	Elevation		Elevation	Time	Elevation
-APR-2004 14:30:00	-0.53	17-APR-2004 14:30:00	-2.00	17-APR-2004 14:30:00	-2.00
7-APR-2004 14:45:00	-0.73	17-APR-2004 14:45:00	-2.07	17-APR-2004 14:45:00	-2.00
7-APR-2004 15:00:00	-1.07	17-APR-2004 15:00:00	-2.07	17-APR-2004 15:00:00	-2.00
'-APR-2004 15:15:00	-0.80	17-APR-2004 15:15:00	-2.03	17-APR-2004 15:15:00	-2.00
7-APR-2004 15:30:00	-0.60	17-APR-2004 15:30:00	-2.10	17-APR-2004 15:30:00	-2.07
?-2004 15:45:00	-0.60		-2.00	17-APR-2004 15:45:00	-2.03
'-APR-2004 16:00:00	-0.73	17-APR-2004 16:00:00	-2.07	17-APR-2004 16:00:00	-2.00
7-APR-2004 16:15:00	-1.00	17-APR-2004 16:15:00	-2.10	17-APR-2004 16:15:00	-2.13
7-APR-2004 16:30:00	-1.27		-2.13	17-APR-2004 16:30:00	-2.03
-APR-2004 16:45:00	-1.07	17-APR-2004 16:45:00	-2.07	17-APR-2004 16:45:00	-2.07
7-APR-2004 17:00:00	-1.00	17-APR-2004 17:00:00	-2.07	17-APR-2004 17:00:00	-2.00
1-2004 17:15:00	-0.93	17-APR-2004 17:15:00	-2.07	17-APR-2004 17:15:00	-2.07
7-APR-2004 17:30:00	-0.80	17-APR-2004 17:30:00	-2.07	17-APR-2004 17:30:00	-2.13
7-APR-2004 17:45:00	-0.67	17-APR-2004 17:45:00	-2.03	17-APR-2004 17:45:00	-2.07
7-APR-2004 18:00:00	-0.93	17-APR-2004 18:00:00	-2.07	17-APR-2004 18:00:00	-2.20
7-APR-2004 18:15:00	-1.03	17-APR-2004 18:15:00	-2 03	17-APR-2004 18:15:00	-2 07
7-APR-2004 18:30:00	-133	17-APR-2004 18:30:00	-2 00	17-APR-2004 18:30:00	-2 13
7-APR-2004 18:45:00	08.0-	17-APR-2004 18:45:00	-2 13	17-APR-2004 18:45:00	20.12
7-ADP-2004 10:43:00	00.0	17 ADP 2004 10:43:00	2.13	17 APP 2004 10:43:00	20.07
7 ADP 2004 19:00:00	6.6	17 ADD 2004 19:00:00	20.10	17 APP 2004 19:00:00	200
7-APR-2004 19:10:00	5 5	17-ADE-2004 19:19:00	2.03	17. APP 2004 19:19:00	202
7 APP 2004 19:30:00	1 13	17 ADD 2004 19:30:00	2.03	17 APP 2004 19:30:00	-2.07
7 ADD 2004 19:43:00	-1.13	17 APP 2004 19:45:00	2.07	17-APR-2004 19:45:00	-2.13
7 ADD 2004 20:06:00	4 27	17 ABB 2004 20:00:00	20.03	17 APP 2004 20 00 00	-2.07
7 ADD 2004 20:13:00	1.27	17 APP 2004 20:19:00	2.07	17-AFR-2004 20: 19:00	-2.13
2004 20:30:00	5 5	17-APR-2004 20:30:00	2.07	17-AFR-2004 20:30:00	-2.13
7 APR-2004 20:45:00	-0.03	17-APR-2004 20:45:00	22.00	17-AFR-2004 20:45:00	-2.13
7 APR-2004 21.00.00	-0.07	17-AFR-2004 Z1:00:00	-2.00	17-AFR-2004 21:00:00	-2.13
X-2004 21:15:00	-0.87	17-APR-2004 21:15:00	-2.03	17-APR-2004 21:15:00	-2.1/
-AFR-2004 21:30:00	-1.00	17-APR-2004 21:30:00	-2.00	17-APR-2004 21:30:00	-2.13
7-APR-2004 21:45:00	-1.00	17-APR-2004 21:45:00		17-APR-2004 21:45:00	-2.13
7-APR-2004 22:00:00	-0.93	17-APR-2004 22:00:00		17-APR-2004 22:00:00	-2.13
\-2004 22:15:00		17-APR-2004 22:15:00		17-APR-2004 22:15:00	-2.20
3-2004 22:30:00		17-APR-2004 22:30:00		17-APR-2004 22:30:00	-2.20
\-2004 22:45:00		17-APR-2004 22:45:00	-2.07	17-APR-2004 22:45:00	-2.13
17-APR-2004 23:00:00	-0.87	17-APR-2004 23:00:00	-2.07	17-APR-2004 23:00:00	-2.23
(-2004 23:15:00		17-APR-2004 23:15:00	-2.00	17-APR-2004 23:15:00	-2.13
7-APR-2004 23:30:00	-0.67	17-APR-2004 23:30:00	-2.07	17-APR-2004 23:30:00	-2.13
17-APR-2004 23:45:00	-0.53	17-APR-2004 23:45:00	-2.13	17-APR-2004 23:45:00	-2.27
18-APR-2004 00:00:00	-0.47	18-APR-2004 00:00:00	-2.13	18-APR-2004 00:00:00	-2.20
?-2004 00:15:00	-0.63	18-APR-2004 00:15:00	-2.13	18-APR-2004 00:15:00	-2.13
18-APR-2004 00:30:00	-0.73	18-APR-2004 00:30:00	-2.13	18-APR-2004 00:30:00	-2.17
I8-APR-2004 00:45:00	-0.60	18-APR-2004 00:45:00	-2.13	18-APR-2004 00:45:00	-2.13
2004 01:00:00	-0.73	18-APR-2004 01:00:00	-2.13	18-APR-2004 01:00:00	-2.17
8-APR-2004 01:15:00	-0.80	18-APR-2004 01:15:00	-2.20	18-APR-2004 01:15:00	-2.13
8-APR-2004 01:30:00	-0.93	18-APR-2004 01:30:00	-2.20	18-APR-2004 01:30:00	-2.17
18-APR-2004 01:45:00	-0.53	18-APR-2004 01:45:00	-2.13	18-APR-2004 01:45:00	-2.27
8-APR-2004 02:00:00	-0.20	18-APR-2004 02:00:00	-2.13	18-APR-2004 02:00:00	-2.23
8-APR-2004 02:15:00	-0.87	18-APR-2004 02:15:00	-2.13	18-APR-2004 02:15:00	-2.27
18-APR-2004 02:30:00	-1.40	18-APR-2004 02:30:00	-2.13	18-APR-2004 02:30:00	-2.20
18-APR-2004 02:45:00	-1.13	18-APR-2004 02:45:00	-2.07	18-APR-2004 02:45:00	-2.20
18-APR-2004 03:00:00	-1.13	18-APR-2004 03:00:00	-2.17	18-APR-2004 03:00:00	-2.17
2004 03:15:00	-0.67	18-APR-2004 03:15:00		18-APR-2004 03:15:00	-2.13
18-APR-2004 03:30:00	-0.67	18-APR-2004 03:30:00	-2.13	18-APR-2004 03:30:00	-2.13
18-APR-2004 03:45:00	-0.73	18-APR-2004 03:45:00		18-APR-2004 03:45:00	-2.20
-2004 04:00:00	-0.67	18-APR-2004 04:00:00		18-APR-2004 04:00:00	-2.33
18-APR-2004 04:15:00	-0.67	18-APR-2004 04:15:00	-2.10	18-APR-2004 04:15:00	-2.13
18-APR-2004 04:30:00	-0.40	18-APR-2004 04:30:00	-2.13	18-APR-2004 04:30:00	-2.13
8-APR-2004 04:45:00	-1.0/	18-APR-2004 04:45:00	-2.10	18-APR-2004 04:45:00	-2.20
18-APR-2004 05:00:00	-1.10	18-APR-2004 05:00:00	-2.13	18-APR-2004 05:00:00	-2.23
					2:5

	ECDCWCC1&DV		FCPCWGG2&PV	VQ2SUQS IIWE	FWII SPNSEDV
Time	Elevation	Time	Elevation	Time	Elevation
8-APR-2004 05:30:00	-1.13	18-APR-2004 05:30:00	-2.23	18-APR-2004 05:30:00	-2.27
8-APR-2004 05:45:00	-0.80	18-APR-2004 05:45:00	-2.20	18-APR-2004 05:45:00	-2.23
8-APR-2004 06:00:00	-0.67	18-APR-2004 06:00:00	-2.13	18-APR-2004 06:00:00	-2.23
18-APR-2004 06:15:00	-1.80	18-APR-2004 06:15:00	-2.20	18-APR-2004 06:15:00	-2.20
18-APR-2004 06:30:00	-2.00	18-APR-2004 06:30:00	-2.20	18-APR-2004 06:30:00	-2.37
18-APR-2004 06:45:00	-1.53	18-APR-2004 06:45:00	-2.27	18-APR-2004 06:45:00	-2.13
8-APR-2004 07:00:00	-1.33	18-APR-2004 07:00:00	-2.26	18-APR-2004 07:00:00	-2.27
18-APR-2004 07:15:00	-1.07	18-APR-2004 07:15:00	-2.23	18-APR-2004 07:15:00	-2.27
18-APR-2004 07:30:00	0:30	18-APR-2004 07:30:00	-2.13	18-APR-2004 07:30:00	-2.34
I8-APR-2004 07:45:00	-0.87	18-APR-2004 07:45:00	-2.17	18-APR-2004 07:45:00	-2.33
3-APR-2004 08:00:00	-0.53	18-APR-2004 08:00:00	-2.13	18-APR-2004 08:00:00	-2.27
18-APR-2004 08:15:00	-1.10	18-APR-2004 08:15:00	-2.13	18-APR-2004 08:15:00	-2.37
18-APR-2004 08:30:00	-1.23	18-APR-2004 08:30:00	-2.17	18-APR-2004 08:30:00	-2.40
8-APR-2004 08:45:00	-1.60	18-APR-2004 08:45:00	-2.20	18-APR-2004 08:45:00	-2.40
18-APR-2004 09:00:00	-0.57	18-APR-2004 09:00:00	-2.20	18-APR-2004 09:00:00	-2.33
18-APR-2004 09:15:00	-1.03	18-APR-2004 09:15:00	-2.20	18-APR-2004 09:15:00	-2.37
8-APR-2004 09:30:00	-0.47	18-APR-2004 09:30:00	-2.20	18-APR-2004 09:30:00	-2.47
18-APR-2004 09:45:00	-0.93	18-APR-2004 09:45:00	-2.20	18-APR-2004 09:45:00	-2.30
18-APR-2004 10:00:00	-1.07	18-APR-2004 10:00:00	-2.30	18-APR-2004 10:00:00	-2.47
8-APR-2004 10:15:00	-1.07	18-APR-2004 10:15:00	-2.27	18-APR-2004 10:15:00	-2.23
18-APR-2004 10:30:00	17.1-	18-APR-2004 10:30:00	-2.20	18-APR-2004 10:30:00	-2.30
18-APR-2004 10:45:00	-0.70	18-APK-2004 10:45:00	-2.33	18-APR-2004 10:45:00	-2.33
18-APR-2004 11:00:00	-1.00	18-APR-2004 11:00:00	-2.2/	18-APR-2004 11:00:00	-2.43
APP 2004 11:13:00	-1.50	10-AFR-2004 11:19:00	-2.23	10-AFR-2004 11:13:00	-2.40
18-APR-2004 11.30.00	-0.0/	18-APR-2004 11:30:00	-2.13	18-APR-2004 11:30:00	-2.40
-APR-2004 12:00:00	1.5	18-APR-2004 12:00:00	-2 13	18-APR-2004 12:00:00	-2.47
18-APR-2004 12:15:00	-0.87	18-APR-2004 12:15:00	-2.27	18-APR-2004 12:15:00	-2.53
8-APR-2004 12:30:00	-0.93	18-APR-2004 12:30:00		18-APR-2004 12:30:00	-2.47
8-APR-2004 12:45:00	-0.63	18-APR-2004 12:45:00		18-APR-2004 12:45:00	-2.47
8-APR-2004 13:00:00	-0.60	18-APR-2004 13:00:00		18-APR-2004 13:00:00	-2.40
8-APR-2004 13:15:00	-1.13	18-APR-2004 13:15:00		18-APR-2004 13:15:00	-2.43
-APR-2004 13:30:00	-1.00	18-APR-2004 13:30:00	-2.27	18-APR-2004 13:30:00	-2.37
18-APR-2004 13:45:00	-0.93	18-APR-2004 13:45:00	-2.27	18-APR-2004 13:45:00	-2.40
8-APR-2004 14:00:00	-0.90	18-APR-2004 14:00:00	-2.23	18-APR-2004 14:00:00	-2.47
APR-2004 14:15:00	-0.87	18-APK-2004 14:15:00	-2.17	18-APR-2004 14:15:00	-2.47
18 APP 2004 14:30:00	08.0	18 APP 2004 14:30:00	2.2.0	18-APR-2004 14:30:00	-2.40
8-APR-2004 14:43:00	-0.50	18-APR-2004 14:45:00	-2.13	18-APE-2004 14:45:00	-2.53
8-APR-2004 15:15:00	-1.27	18-APR-2004 15:15:00	-2 13	18-APR-2004 15:15:00	-2 43
18-APR-2004 15:30:00	-0.87	18-APR-2004 15:30:00	-2.20	18-APR-2004 15:30:00	-2.57
18-APR-2004 15:45:00	-1.13	18-APR-2004 15:45:00	-2.23	18-APR-2004 15:45:00	-2.50
18-APR-2004 16:00:00	-0.67	18-APR-2004 16:00:00	-2.20	18-APR-2004 16:00:00	-2.43
18-APR-2004 16:15:00	-1.13	18-APR-2004 16:15:00	-2.10	18-APR-2004 16:15:00	-2.43
18-APR-2004 16:30:00	-1.27	18-APR-2004 16:30:00	-2.13	18-APR-2004 16:30:00	-2.43
18-APR-2004 16:45:00	-1.17		-2.20	18-APR-2004 16:45:00	-2.33
18-APR-2004 17:00:00	-1.70	18-APR-2004 17:00:00	-2.13	18-APR-2004 17:00:00	-2.60
18-APR-2004 17:15:00	-1.57	18-APR-2004 17:15:00	-2.13	18-APR-2004 17:15:00	-2.43
-APR-2004 17:30:00	-0.80	18-APR-2004 17:30:00	-2.07	18-APR-2004 17:30:00	-2.47
18-APR-2004 17:45:00	-1.07	18-APR-2004 17:45:00	-2.07	18-APR-2004 17:45:00	-2.50
18-APR-2004 18:00:00	-1.40	18-APR-2004 18:00:00	-2.07	18-APR-2004 18:00:00	-2.33
18-APR-2004 18:30:00	-1.75	18-APR-2004 18:30:00	-2.07	18-APR-2004 18:30:00	-2.00
-APR-2004 18:45:00	-1.40	18-APR-2004 18:45:00	-2.10	18-APR-2004 18:45:00	-2.40
18-APR-2004 19:00:00	-1.47		-2.13	18-APR-2004 19:00:00	-2.33
18-APR-2004 19:15:00	-1.50	18-APR-2004 19:15:00	-2.13	18-APR-2004 19:15:00	-2.33
8-APR-2004 19:30:00	-1.37	18-APR-2004 19:30:00	-2.20	18-APR-2004 19:30:00	-2.60
8-APR-2004 19:45:00	-1.33	18-APR-2004 19:45:00	-2.20	18-APR-2004 19:45:00	-2.40
18-APR-2004 20:00:00	-1.30	18-APR-2004 20:00:00	-2.20	18-APR-2004 20:00:00	-2.40
-APR-2004 20:15:00	-1.20	18-APR-2004 20:15:00	-2.13	18-APR-2004 20:15:00 [-2.33

	(CRCW - Lake)		(CRCW - River)		(Willow Springs)
Time	Elevation	Time	Elevation	Time	Elevation
18-APR-2004 20:30:00	-1.27	18-APR-2004 20:30:00	-2.13	18-APR-2004 20:30:00	-2.33
18-APR-2004 20:45:00	-1.60	18-APR-2004 20:45:00	-2.27	18-APR-2004 20:45:00	-2.37
18-APR-2004 21:00:00	-1.13	18-APR-2004 21:00:00	-2.30	18-APR-2004 21:00:00	-2.33
18-APR-2004 21:15:00	-1.60	18-APR-2004 21:15:00	-2.17	18-APR-2004 21:15:00	-2.40
8-APR-2004 21:30:00	-1.53	18-APR-2004 21:30:00	-2.13	18-APR-2004 21:30:00	-2 30
18-APR-2004 21:45:00	-167	18-APR-2004 21:45:00	-2 13	18-APR-2004 21:45:00	-23.2
8-APR-2004 22:00:00	-130	18-APR-2004 22:00:00	-2 13	18-APR-2004 22:00:00	-2.37
8-APR-2004 22:15:00	-1.43	18-APR-2004 22:15:00	-2 13	18-APR-2004 22:15:00	-2.37
8-APR-2004 22:30:00	100	18-APR-2004 22:30:00	2 13	18 A DE 2004 22:10:00	04.0
18-ADR-2004 22:30:00	1.00	18 APP 2004 22:30:00	2.13	18-AFR-2004 22.30.00	22.40
9 APP 2004 22:43:00	50.1-	18-AFR-2004 22.43.00	-2.10	10-AFR-2004 22.45.00	55.55
10-AF N-2004 23:00:00	02.1-	18-APR-2004 23:00:00	-2.07	18-APR-2004 23:00:00	-2.33
0-APR-2004 23:15:00	-0.85	18-AFR-2004 23:15:00	-2.03	18-AFR-2004 23:15:00	-2.33
18-APR-2004 23:30:00	-1.10	18-APR-2004 23:30:00	-2.10	18-APR-2004 23:30:00	-2.33
18-APR-2004 23:45:00	-0.97	18-APR-2004 23:45:00	-2.03	18-APR-2004 23:45:00	-2.33
9-APR-2004 00:00:00	-1.27	19-APR-2004 00:00:00	-2.03	19-APR-2004 00:00:00	-2.33
19-APR-2004 00:15:00	-1.73	19-APR-2004 00:15:00	-2.00	19-APR-2004 00:15:00	-2.30
9-APR-2004 00:30:00	-0.80	19-APR-2004 00:30:00	-2.00	19-APR-2004 00:30:00	-2.27
9-APR-2004 00:45:00	-0.97	19-APR-2004 00:45:00	-2.07	19-APR-2004 00:45:00	-2.33
9-APR-2004 01:00:00	-1.00	19-APR-2004 01:00:00	-2.07	19-APR-2004 01:00:00	-2.33
9-APR-2004 01:15:00	-0.97	19-APR-2004 01:15:00	-2.00	19-APR-2004 01:15:00	-2.33
9-APR-2004 01:30:00	-1.17	19-APR-2004 01:30:00	-2.00	19-APR-2004 01:30:00	-2.27
9-APR-2004 01:45:00	-0.93	19-APR-2004 01:45:00	-2.00	19-APR-2004 01:45:00	-2.23
9-APR-2004 02:00:00	-1.00	19-APR-2004 02:00:00	-1.97	19-APR-2004 02:00:00	-2.27
9-APR-2004 02:15:00	-1.00	19-APR-2004 02:15:00	-2.00	19-APR-2004 02:15:00	-2.27
9-APR-2004 02:30:00	-1.07	19-APR-2004 02:30:00	-1.97	19-APR-2004 02:30:00	-2.27
9-APR-2004 02:45:00	-1.07	19-APR-2004 02:45:00	-2.03	19-APR-2004 02:45:00	-2.27
9-APR-2004 03:00:00	-1.00	19-APR-2004 03:00:00	-2.00	19-APR-2004 03:00:00	-2.27
9-APR-2004 03:15:00	-1.20	19-APR-2004 03:15:00	-1.93	19-APR-2004 03:15:00	-2.27
9-APR-2004 03:30:00	-1.60	19-APR-2004 03:30:00	-1.97	19-APR-2004 03:30:00	-2.27
9-APR-2004 03:45:00	-1.30	19-APR-2004 03:45:00	-1.97	19-APR-2004 03:45:00	-2.27
19-APR-2004 04:00:00	-1.50	19-APR-2004 04:00:00	-2.03	19-APR-2004 04:00:00	-2.40
9-APR-2004 04:15:00	-0.93	19-APR-2004 04:15:00	-2.00	19-APR-2004 04:15:00	-2.33
9-APR-2004 04:30:00	-1.33	19-APR-2004 04:30:00	-2.00	19-APR-2004 04:30:00	-2.27
9-APR-2004 04:45:00	-1.53	19-APR-2004 04:45:00	-1.97	19-APR-2004 04:45:00	-2.27
3-APR-2004 05:00:00	-1.27	19-APR-2004 05:00:00	-2.00	19-APR-2004 05:00:00	-2.20
9-APR-2004 05:15:00	-1.50	19-APR-2004 05:15:00	-2.07	19-APR-2004 05:15:00	-2.27
9-APR-2004 05:30:00	-1.13	19-APR-2004 05:30:00	-2.07	19-APR-2004 05:30:00	-2.17
9-APR-2004 05:45:00	-1.43	19-APR-2004 05:45:00	-2.07	19-APR-2004 05:45:00	-2.20
9-APR-2004 06:00:00	-1.43	19-APR-2004 06:00:00	-2.03	19-APR-2004 06:00:00	-2.13
9-APR-2004 06:15:00	-1.37	19-APR-2004 06:15:00	-2.00	19-APR-2004 06:15:00	-2.37
9-APR-2004 06:30:00	-1.37	19-APR-2004 06:30:00	-2.00	19-APR-2004 06:30:00	-2.27
9-APR-2004 06:45:00	-1.27	19-APR-2004 06:45:00	-2.07	19-APR-2004 06:45:00	-2.20
9-APR-2004 07:00:00	-1.23	07	-2.07	19-APR-2004 07:00:00	-2.27
9-APR-2004 07:15:00	-1.60	19-APR-2004 07:15:00	-2.00	19-APR-2004 07:15:00	-2.27
9-APR-2004 07:30:00	-1.57	19-APR-2004 07:30:00	-2.07	19-APR-2004 07:30:00	-2.40
9-APR-2004 07:45:00	-1.60	19-APR-2004 07:45:00	-2.07	19-APR-2004 07:45:00	-2.27
19-APR-2004 08:00:00	-1.60	19-APR-2004 08:00:00	-2.07	19-APR-2004 08:00:00	-2.27
9-APR-2004 08:15:00	-1.47	19-APR-2004 08:15:00	-2.00	19-APR-2004 08:15:00	-2.27
19-APR-2004 08:30:00	-1.20	19-APR-2004 08:30:00	-2.00	19-APR-2004 08:30:00	-2.33
9-APR-2004 08:45:00	-1.23	19-APR-2004 08:45:00	-2.03	19-APR-2004 08:45:00	-2.33
9-APR-2004 09:00:00	-1.07	19-APR-2004 09:00:00	-1.80	19-APR-2004 09:00:00	-2.20
9-APR-2004 09:15:00	-0.93	19-APR-2004 09:15:00	-1.77	19-APR-2004 09:15:00	-2.27
9-APK-2004 09:30:00	-1.03	19-APR-2004 09:30:00	-1.67	19-APR-2004 09:30:00	-2.33
19-APR-2004 09:45:00	-1.0/	19-APR-2004 09:45:00	-2.00	19-APR-2004 09:45:00	-2.33
19-APR-2004 10:15:00	1 07	19-APR-2004 10:00:00	2.00	19-APR-2004 10:00:00	2.27
9-APR-2004 10:30:00	-1.07	19-APR-2004 10:30:00	-193	19-APR-2004 10:30:00	-2 07
19-APR-2004 10:45:00	-1.27	19-APR-2004 10:45:00	-2.03	19-APR-2004 10:45:00	-2 33
-APR-2004 11:00:00	-1.40	19-APR-2004 11:00:00		19-APR-2004 11:00:00	-2.40
19-APR-2004 11:15:00		19-APR-2004 11:15:00	-2.07	19-APR-2004 11:15:00	-2.27
			1		

	(CRCW - Lake)		(CRCW - River)		(Willow Springs)
Time	ECRCWGG1\$PV	Limo	ECRCWGGZ\$PV	ă.	EWILSPNS\$PV
19.APR-2004 11:30:00	-1 00	19-APR-2004 11:30:00	-2 13	19-APR-2004 11:30:00	-2.43
	- 0- - 0-	19-APR-2004 11-45-00	-2 13	19-APR-2004 11:45:00	-2 47
19-A1 1-2004 11:40:00	1,05	19-APR-2004 12:00:00	20.5	19-APB-2004 12-00:00	-2 40
19-AFR-2004 12:00:00	70.1-	19-APR-2004 12:00:00	2.07	19-APR-2004 12:00:00	2.33
19-APR-2004 12:15:00	-0.73	19-APR-2004 12:30:00	-2.13	19-APR-2004 12:30:00	-2.27
19-APR-2004 12:45:00	-0.63	19-APR-2004 12:45:00	-2.10	19-APR-2004 12:45:00	-2.33
19-APR-2004 13:00:00	-0.80	19-APR-2004 13:00:00	-2.20	19-APR-2004 13:00:00	-2.40
19-APR-2004 13:15:00	-1.20	19-APR-2004 13:15:00	-2.20	19-APR-2004 13:15:00	-2.43
19-APR-2004 13:30:00	-0.87	19-APR-2004 13:30:00	-2.20	19-APR-2004 13:30:00	-2.37
19-APR-2004 13:45:00	-0.80	19-APR-2004 13:45:00	-2.20	19-APR-2004 13:45:00	-2.33
19-APR-2004 14:00:00	-0.60	19-APR-2004 14:00:00	-2.20	19-APR-2004 14:00:00	-2.33
19-APR-2004 14:15:00	-0.47	19-APR-2004 14:15:00	-2.27	19-APR-2004 14:15:00	-2.40
19-APR-2004 14:30:00	-0.70	19-APR-2004 14:30:00	-2.33	19-APR-2004 14:30:00	-2.33
19-APR-2004 14:45:00	-0.87	19-APR-2004 14:45:00	-2.33	19-APR-2004 14:45:00	-2.40
19-APR-2004 15:00:00	-1.00	19-APR-2004 15:00:00	-2.27	19-APR-2004 15:00:00	-2.40
19-APR-2004 15:15:00	-1.00	19-APR-2004 15:15:00	-2.23	19-APR-2004 15:15:00	-2.47
19-APR-2004 15:30:00	-0.93	19-APR-2004 15:30:00	-2.27	19-APR-2004 15:30:00	-2.40
19-APR-2004 15:45:00	-0.93	19-APR-2004 15:45:00	-2.27	19-APR-2004 15:45:00	-2.33
19-APR-2004 16:00:00	-1.07	19-APR-2004 16:00:00	-2.33	19-APR-2004 16:00:00	-2.33
19-APR-2004 16:15:00	-1.13	19-APR-2004 16:15:00	-2.23	19-APR-2004 16:15:00	-2.37
19-APR-2004 16:30:00	-1.00	19-APR-2004 16:30:00	-2.33	19-APR-2004 16:30:00	-2.33
19-APR-2004 16:45:00	-1.00	19-APR-2004 16:45:00	-2.33	19-APR-2004 16:45:00	-2.33
19-APR-2004 17:00:00	-0.93	19-APR-2004 17:00:00	-2.30	19-APR-2004 17:00:00	-2.33
19-APR-2004 17:15:00	-0.80	19-APR-2004 17:15:00	-2.27	19-APR-2004 17:15:00	-2.30
19-APR-2004 17:30:00	-0.80	19-APR-2004 17:30:00	-2.33	19-APR-2004 17:30:00	-2.33
19-APR-2004 17:45:00	-1.27	19-APR-2004 17:45:00	-2.33	19-APR-2004 17:45:00	-2.43
19-APR-2004 18:00:00	-1.40	19-APR-2004 18:00:00	-2.33	19-APR-2004 18:00:00	-2.37
19-APR-2004 18:15:00	-1.40	19-APR-2004 18:15:00	77.7-	19-APK-2004 18:15:00	-2.33
19-APR-2004 18:30:00	-1.20	19-APR-2004 18:30:00	72.27	19-APR-2004 18:30:00	-2.3/
19-APR-2004 10:45:00	-1.13	19-APR-2004 10:45:00	72.27	19-APR-2004 10:45:00	-2.27
19-APR-2004 19:15:00	-1.47	19-APR-2004 19:15:00	-2.40	19-APR-2004 19:15:00	-2.23
19-APR-2004 19:30:00		19-APR-2004 19:30:00	-2.30	19-APR-2004 19:30:00	-2.33
19-APR-2004 19:45:00		19-APR-2004 19:45:00	-2.33	19-APR-2004 19:45:00	-2.43
19-APR-2004 20:00:00	-1.33	19-APR-2004 20:00:00	-2.27	19-APR-2004 20:00:00	-2.33
19-APR-2004 20:15:00	:	19-APR-2004 20:15:00	-2.27	19-APR-2004 20:15:00	-2.33
19-APR-2004 20:30:00	-1.07	19-APR-2004 20:30:00	-2.27	19-APR-2004 20:30:00	-2.23
19-APR-2004 20:45:00	-1.07	19-APR-2004 20:45:00	-2.33	19-APR-2004 20:45:00	-2.33
19-APR-2004 21:00:00	-1.20	19-APR-2004 21:00:00	-2.33	19-APR-2004 21:00:00	-2.33
19-APR-2004 21:15:00	-1.20	19-APR-2004 21:15:00	-2.33	19-APR-2004 21:15:00	-2.27
19-APR-2004 21:30:00	-1.20	19-APR-2004 21:30:00	-2.27	19-APR-2004 21:30:00	-2.30
19-AFR-2004 Z1:45:00	1.33	19-APR-2004 21:45:00	77.7-	19-APR-2004 21:45:00	-2.43
19-APR-2004 22:00:00	-1.20	19-AFR-2004 22:00:00	-2.33	19-APR-2004 22:00:00	-2.33
19-APR-2004 22:30:00	-0.93	19-APR-2004 22:30:00		19-APR-2004 22:30:00	-2.37
19-APR-2004 22:45:00	-1.07	19-APR-2004 22:45:00		19-APR-2004 22:45:00	-2.27
19-APR-2004 23:00:00	-1.13	19-APR-2004 23:00:00	-2.20	19-APR-2004 23:00:00	-2.30
19-APR-2004 23:15:00	-0.87	19-APR-2004 23:15:00	-2.43	19-APR-2004 23:15:00	-2.33
19-APR-2004 23:30:00	-0.87		-2.33	19-APR-2004 23:30:00	-2.33
19-APR-2004 23:45:00	-1.00	19-APR-2004 23:45:00	-2.37	19-APR-2004 23:45:00	-2.30
20-APK-2004 00:00:00	-0.93	20-APR-2004 00:00:00		20-APR-2004 00:00:00	-2.33
20-APR-2004 00:10:00	-0.83	20-APR-2004 00:30:00	-2.27	20-APR-2004 00:30:00	-2.27
20-APR-2004 00:45:00	-0.87	20-APR-2004 00:45:00		20-APR-2004 00:45:00	-2.27
20-APR-2004 01:00:00	-0.93	20-APR-2004 01:00:00		20-APR-2004 01:00:00	-2.30
20-APR-2004 01:15:00	-0.93	20-APR-2004 01:15:00	-2.23	20-APR-2004 01:15:00	-2.27
20-APR-2004 01:30:00		20-APR-2004 01:30:00	-2.23	20-APR-2004 01:30:00	-2.33
20-APR-2004 01:45:00		20-APR-2004 01:45:00	-2.20	20-APR-2004 01:45:00	-2.40
20-APR-2004 02:00:00	70.7	20-APR-2004 02:00:00	-2.20	20-APR-2004 02:00:00	-2.43
			2:50		4.00

Time Elevation Time 20ARP.2004 02:30:00 2.23 20APR-2004 02:30:00 20ARP.2004 02:30:00 2.20 20APR-2004 02:40:00 20ARP.2004 03:40:00 2.20 20APR-2004 03:40:00 20ARP.2004 03:40:00 2.20 20APR-2004 03:40:00 20ARP.2004 03:40:00 2.27 20APR-2004 03:40:00 20APR-2004 03:40:00 2.27 20APR-2004 03:40:00 20APR-2004 03:40:00 2.27 20APR-2004 03:40:00 20APR-2004 04:30:00 2.27 20APR-2004 04:30:00 20APR-2004 04:30:00 2.27 20APR-2004 04:30:00 20APR-2004 05:40:00 2.27 20APR-2004 05:40:00 20APR-2004 06:30:00 2.20 20APR-2004 05:40:00 20APR-2004 06:30:00 2.20 20APR-2004 05:40:00 20APR-2004 06:30:00 2.21 20APR-2004 05:40:00 20APR-2004 06:30:00 2.21 20APR-2004 05:40:00 20APR-2004 06:40:00 2.20 20APR-2004 05:40:00 20APR-2004 06:40:00 2.21 20APR-2004 05:40:00 20APR-2004 06:40:00 2.21 20APR-2004 05:40:00 <th></th> <th>(CRCW - Lake) ECRCWGG1\$PV</th> <th></th> <th>(CRCW - River) ECRCWGG2\$PV</th> <th></th> <th>(Willow Springs) EWILSPNS\$PV</th>		(CRCW - Lake) ECRCWGG1\$PV		(CRCW - River) ECRCWGG2\$PV		(Willow Springs) EWILSPNS\$PV
20-APR-2004 02:30:00 2.23 20-APR-2004 02:45:00 -2.27 20-APR-2004 03:00:00 -2.20 20-APR-2004 03:00:00 -2.20 20-APR-2004 03:00:00 -2.27 20-APR-2004 03:00:00 -2.27 20-APR-2004 03:00:00 -2.27 20-APR-2004 03:30:00 -2.27 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 05:00:00 -2.20 20-APR-2004 06:00:00 -2.20 20-APR-2004 06:30:00 -2.20 20-APR-2004 06:45:00 -2.20 20-APR-2004 06:45:00 -2.20 20-APR-2004 06:45:00 -2.20 20-APR-2004 06:45:00 <th>1</th> <th>Elevation</th> <th></th> <th>Elevation</th> <th></th> <th>Elevation</th>	1	Elevation		Elevation		Elevation
20-APR-2004 02:45:00 -2.27 20-APR-2004 03:45:00 -2.36 20-APR-2004 03:45:00 -2.37 20-APR-2004 03:45:00 -2.27 20-APR-2004 03:45:00 -2.27 20-APR-2004 03:45:00 -2.27 20-APR-2004 04:30:00 -2.20 20-APR-2004 04:30:00 -2.20 20-APR-2004 04:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.13 20-APR-2004 05:45:00 -2.13 20-APR-2004 05:45:00 -2.13 20-APR-2004 05:45:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:30:00 -2.20 20-APR-2004 10:30:00 -2.23 20-APR-2004 10:30:00 -2.23 20-APR-2004 11:30:00 -2.23 20-APR-2004 12:45:00 -2.33 20-APR-2004 12:45:00 -2.33 20-APR-2004 13:15:00 -2.33 20-APR-2004 13:00:00 -2.40 20-APR-2004 13:00:00 -2.40 20-APR-2004 13:00:00 -2.41 20-APR-2004 13:00:00 -2.41 20-APR-2004 16:15:00 -2.41 20-APR-2004 16:15:00 -2.33 20-APR-2004 16:15:00 -2.33 20-APR-2004 16:15:00 -2.41	ı		20-APR-2004 02:30:00		20-APR-2004 02:30:00	-2.27
20-APR-2004 03:00:00 -2.20 20-APR-2004 03:15:00 -2.33 20-APR-2004 03:30:00 -2.23 20-APR-2004 03:30:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 06:00:00 -2.20 20-APR-2004 06:00:00 -2.13 20-APR-2004 06:00:00 -2.13 20-APR-2004 06:00:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:16:00 -2.20 20-APR-2004 06:16:00 -2.20 20-APR-2004 06:16:00 -2.20 20-APR-2004 06:16:00 -2.20 20-APR-2004 10:00:00 -2.20 20-APR-2004 10:00:00 -2.20 20-APR-2004 10:00:00 -2.23 20-APR-2004 10:00:00 -2.23 20-APR-2004 11:16:00 -2.24 20-APR-2004 11:16:00 -2.23 20-APR-2004 11:16:00			20-APR-2004 02:45:00		20-APR-2004 02:45:00	-2.20
20-APR-2004 03:15:00 -2.36 20-APR-2004 03:45:00 -2.27 20-APR-2004 04:00:00 -2.27 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:00:00 -2.20 20-APR-2004 04:15:00 -2.20 20-APR-2004 04:15:00 -2.20 20-APR-2004 04:15:00 -2.20 20-APR-2004 06:15:00 -2.20 20-APR-2004 06:15:00 -2.20 20-APR-2004 06:15:00 -2.13 20-APR-2004 06:10:00 -2.20 20-APR-2004 06:10:00 -2.13 20-APR-2004 10:10:00 -2.20 20-APR-2004 10:10:00 -2.33 20-APR-2004 10:00:00 -2.33 20-APR-2004 10:00:00 -2.33 20-APR-2004 10:00:00 -2.40 20-APR-2004 10:00:00:	1	ĺ	20-APR-2004 03:00:00		20-APR-2004 03:00:00	-2.27
20-APR-2004 03:30:00 2.33 20-APR-2004 03:45:00 2.27 20-APR-2004 04:15:00 2.27 20-APR-2004 04:15:00 2.20 20-APR-2004 04:15:00 2.20 20-APR-2004 04:15:00 2.20 20-APR-2004 04:45:00 2.20 20-APR-2004 05:30:00 2.20 20-APR-2004 05:30:00 2.20 20-APR-2004 05:00:00 2.20 20-APR-2004 05:00:00 2.13 20-APR-2004 05:15:00 2.13 20-APR-2004 06:15:00 2.13 20-APR-2004 06:15:00 2.13 20-APR-2004 06:15:00 2.20 20-APR-2004 06:10:00 2.20 20-APR-2004 10:30:00 2.20 20-APR-2004 10:30:00 2.20 20-APR-2004 11:15:00 2.23 20-APR-2004 11:15:00 2.23 20-APR-2004 12:16:00 2.23 20-APR-2004 12:16:00 2.23 20-APR-2004 13:16:00 2.23 20-APR-2004 13:16:00 2.23 20-APR-2004 14:16:00 2.23 20-APR-2004 16:16:00 2.23			20-APR-2004 03:15:00		20-APR-2004 03:15:00	-2.20
20-APR-2004 03:45:00 -2.27 20-APR-2004 03:45:00 -2.20 20-APR-2004 04:15:00 -2.20 20-APR-2004 04:30:00 -2.23 20-APR-2004 04:45:00 -2.20 20-APR-2004 04:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.20 20-APR-2004 05:45:00 -2.13 20-APR-2004 05:00:00 -2.20 20-APR-2004 06:45:00 -2.13 20-APR-2004 06:45:00 -2.20 20-APR-2004 11:45:00 -2.23 20-APR-2004 11:45:00 -2.23 20-APR-2004 12:45:00 -2.33 20-APR-2004 12:45:00 -2.33 20-APR-2004 14:45:00 -2.33 20-APR-2004 16:00:00 20-APR-2004 16:00:00 20-APR-2004 16:16:00 20-APR-2004		-0.73	20-APR-2004 03:30:00	-2.33	20-APR-2004 03:30:00	-2.20
20-APR-2004 04:00:00 20-APR-2004 04:00:00 20-APR-2004 04:15:00 20-APR-2004 04:15:00 20-APR-2004 04:15:00 20-APR-2004 04:15:00 20-APR-2004 06:15:00 20-APR-2004 10:15:00 20-APR-2004 10:15:00 20-APR-2004 11:15:00 20-APR-2004 12:20:00 20-APR-20		-0.87	20-APR-2004 03:45:00	-2.27	20-APR-2004 03:45:00	-2.20
-1.23 20-APR-2004 04:30:00 -2.20 -0.93 20-APR-2004 04:30:00 -2.20 -0.93 20-APR-2004 05:00:00 -2.20 -1.07 20-APR-2004 05:00:00 -2.20 -1.10 20-APR-2004 05:00:00 -2.20 -1.10 20-APR-2004 05:00:00 -2.20 -1.10 20-APR-2004 05:00:00 -2.13 -1.10 20-APR-2004 07:15:00 -2.13 -1.10 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 08:15:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.20 -0.93 20-APR-2004 11:15:00 -2.20 -0.87 20-APR-2004 11:15:00 -2.20 -0.87 20-APR-2004 12:15:00 -2.20 -0.67 20-APR-2004 12:15:00 -2.33 -0.60 20-APR-2004 12:15:00 -2.20 -0.60 20-APR-2004 12:15:00 -2.33 -0.60 20-APR-2004 12:15:00 -2.20	_	-1.03	20-APR-2004 04:00:00	-2.20	20-APR-2004 04:00:00	-2.1/
-1.03 20-APR-2004 06:45.00 -2.23 -1.17 20-APR-2004 06:45.00 -2.23 -1.17 20-APR-2004 06:45.00 -2.23 -1.17 20-APR-2004 06:45.00 -2.23 -1.17 20-APR-2004 06:45.00 -2.20 -1.27 20-APR-2004 06:45.00 -2.20 -1.27 20-APR-2004 06:45.00 -2.20 -1.27 20-APR-2004 06:45.00 -2.13 -1.27 20-APR-2004 06:45.00 -2.13 -1.20 20-APR-2004 06:45.00 -2.13 -1.20 20-APR-2004 07:45.00 -2.13 -1.00 20-APR-2004 07:45.00 -2.13 -1.00 20-APR-2004 07:45.00 -2.13 -1.00 20-APR-2004 07:45.00 -2.13 -1.07 20-APR-2004 08:45.00 -2.20 -0.90 20-APR-2004 08:45.00 -2.13 -1.07 20-APR-2004 08:45.00 -2.20 -0.90 20-APR-2004 08:45.00 -2.20 -0.90 20-APR-2004 08:45.00 -2.20 -0.90 20-APR-2004 10:100:00 -2.13 -1.07 20-APR-2004 10:100:00 -2.20 -0.90 20-APR-2004 11:30:00 -2.20 -0.90 20-APR-2004 11:30:00 -2.13 -0.80 20-APR-2004 11:30:00 -2.33 -0.80 20-APR-2004 11:30:00 -2.33 -0.80 20-APR-2004 12:40:00 -2.33 -0.60 20-APR-2004 13:00:00 -2.33 -0.60 20-APR-2004 14:45:00 -2.33 -0.60 20-APR-2004 16:15:00 -2.20 -2.20 -2.20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	_	1.63	20 A PR 2004 04:30:00	2.27	20 APP 2004 04: 15:00	2.27
-1.17 20-APR-2004 05:100 2.20 -1.10 20-APR-2004 05:3000 -2.20 -1.10 20-APR-2004 05:4500 -2.20 -1.11 20-APR-2004 05:4500 -2.20 -1.12 20-APR-2004 06:45:00 -2.20 -1.13 20-APR-2004 06:45:00 -2.20 -1.13 20-APR-2004 06:45:00 -2.13 -1.10 20-APR-2004 07:15:00 -2.13 -1.00 20-APR-2004 07:15:00 -2.13 -1.01 20-APR-2004 07:15:00 -2.13 -1.02 20-APR-2004 07:15:00 -2.13 -1.03 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.10 -0.93 20-APR-2004 08:15:00 -2.20 -0.93 20-APR-2004 08:15:00 -2.20 -0.93 20-APR-2004 08:15:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 11:30:00 -2.21 -0.87 20-APR-2004 12:45:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.34 -0.93 20-APR-2004 12:45:00 -2.34 -0.93 20-APR-2004 12:45:00 -2.34 -0.93 20-APR-2004 12:45:00 -2.34 -0.93 20-APR-2004 13:00:00 -2.30 -0.93 20-APR-2004 12:45:00 -2.34 -0.97 20-APR-2004 12:45:00 -2.34 -0.67 20-APR-2004 14:30:00 -2.34 -0.67 20-APR-2004 14:30:00 -2.40 -0.80 20-APR-2004 16:30:00 -2.41 -0.87 20-APR-2004 16:30:00 -2.41 -0.80 20-APR-2004 16:30:00 -2.41 -0.87 20-APR-2004 16:30:00 -2.41 -0.53 20-APR-2004 16:30:00 -2.40 -0.53 20-APR-2004 16:30:00 -2.40 -0.53 20-APR-2004 16:30:00 -2.40 -0.53 20-APR	-	-1.03	20 ADP-2004 04:30:00	2 20	20-AFR-2004 04.30.00	2.77
-1.07 20-APR-2004 05:15:00 -2.70 -1.00 20-APR-2004 05:30:00 -2.20 -1.10 20-APR-2004 05:30:00 -2.20 -1.10 20-APR-2004 06:30:00 -2.20 -1.10 20-APR-2004 06:30:00 -2.20 -1.20 20-APR-2004 06:30:00 -2.20 -1.20 20-APR-2004 06:30:00 -2.13 -1.10 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 08:15:00 -2.13 -1.07 20-APR-2004 08:15:00 -2.10 -1.07 20-APR-2004 08:10:00 -2.20 -0.90 20-APR-2004 08:10:00 -2.20 -0.91 20-APR-2004 10:30:00 -2.20 -0.92 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.23 -0.87 20-APR-2004 10:30:00 -2.23 -0.87 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 12:15:00 -2.33 -0.67 20-APR-2004 12:15:00 -2.40 -0.80 20-APR-2004 12:15:00 -2.40 -0.80 20-APR-2004 12:15:00 -2.40 -0.67 20-APR-2004 12:15:00 -2.40 -0.67 20-APR-2004 14:10:00 -2.33 -0.67 20-APR-2004 14:10:00 -2.41 -0.67 20-APR-2004 14:10:00 -2.41 -0.67 20-APR-2004 14:30:00 -2.41 -0.67 20-APR-2004 16:30:00 -2.41 -0.69 20-APR-2004 16:30:00 -2.41 -0.60 20-APR-2004 16:30:00 -2.41 -0.60 20-APR-2004 16:30:00 -2.41	+	112	20-APR-2004 05-00:00	-2 23	20-APR-2004 05:00:00	2.30
-1.00 20-APR-2004 05:30:00 -2.20 -1.10 20-APR-2004 05:45:00 -2.20 -1.13 20-APR-2004 05:00:00 -2.20 -1.13 20-APR-2004 06:00:00 -2.13 -1.10 20-APR-2004 06:00:00 -2.13 -1.10 20-APR-2004 06:00:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.10 20-APR-2004 10:00:00 -2.20 -0.97 20-APR-2004 10:00:00 -2.20 -0.98 20-APR-2004 12:00:00 -2.23 -0.67 20-APR-2004 12:00:00 -2.40 -0.60 20-APR-2004 12:00:00 -2.40 -0.60 20-APR-2004 12:00:00 -2.40 -0.60 20-APR-2004 12:00:00 -2.40 -0.60 20-APR-2004 12:00:00 -2.41	+	-1.07	20-APR-2004 05:15:00	-2.17	20-APR-2004 05:15:00	-2.20
-1.10 20-APR-2004 05:45:00 -2.20 -1.27 20-APR-2004 05:00:00 -1.20 20-APR-2004 05:15:00 -2.20 -1.30 20-APR-2004 05:30:00 -2.13 -1.10 20-APR-2004 05:30:00 -2.13 -1.00 20-APR-2004 07:00:00 -2.13 -1.00 20-APR-2004 07:00:00 -2.13 -1.00 20-APR-2004 07:00:00 -2.13 -1.00 20-APR-2004 07:00:00 -2.13 -1.00 20-APR-2004 08:45:00 -2.13 -1.01 20-APR-2004 08:45:00 -2.13 -1.02 20-APR-2004 08:45:00 -2.10 -1.03 20-APR-2004 08:45:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.10 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.91 20-APR-2004 08:45:00 -2.20 -0.92 20-APR-2004 10:30:00 -2.27 -0.87 20-APR-2004 10:30:00 -2.27 -0.87 20-APR-2004 10:30:00 -2.27 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 13:00:00 -2.27 -0.87 20-APR-2004 13:00:00 -2.23 -0.57 20-APR-2004 14:15:00 -2.33 -0.58 20-APR-2004 14:15:00 -2.33 -0.59 20-APR-2004 14:15:00 -2.33 -0.50 20-APR-2004 16:00:00 -2.40 -0.60 20-APR-2004 16:15:00 -2.33 -0.50 20-APR-2004 16:15:00 -2.33 -0.50 20-APR-2004 16:15:00 -2.33 -0.50 20-APR-2004 16:15:00 -2.33 -0.50 20-APR-2004 16:00:00 -2.41 -0.60 20-APR-2004 16:00:00 -2.64 -0.60 20-APR-2004 16:00:00 -2.65 -0.50 20-APR-2004 16:00:00 -2.65 -0.50 20-APR-2004 16:00:00 -2.55 -0.50	-	-1.00	20-APR-2004 05:30:00	-2.20	20-APR-2004 05:30:00	-2.23
-1.27 20-APR-2004 06:00:00 -2.20 -1.13 20-APR-2004 06:00:00 -2.13 -1.10 20-APR-2004 06:45:00 -2.20 -1.20 20-APR-2004 06:45:00 -2.20 -1.20 20-APR-2004 07:00:00 -2.14 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.20 -0.93 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 11:45:00 -2.20 -0.93 20-APR-2004 12:30:00 -2.20 -0.93 20-APR-2004 12:30:00 -2.20 -0.93 20-APR-2004 12:40:00 -2.20 -0.93 20-APR-2004 14:45:00 -2.33 -0.67 20-APR-2004 14:20:00 -2.20 -0.93 -0.67 20-APR-2004 16:20:00 -2.20 -0.93 -0.67 20-APR-2004 16:20:00 -2.20 -0.93 -0.67 20-APR-2004 16:20:00 -2.20 -0.93 -0.60 20-APR-2004 16:20:00 -2.20 -0.	•	-1.10	20-APR-2004 05:45:00	-2.20	20-APR-2004 05:45:00	-2.20
-1.13 20-APR-2004 06:15:00 -2.13 -1.10 20-APR-2004 06:30:00 -2.20 -0.93 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 10:30:00 -2.20 -0.90 20-APR-2004 10:30:00 -2.20 -0.90 20-APR-2004 10:30:00 -2.20 -0.90 20-APR-2004 10:30:00 -2.20 -0.80 20-APR-2004 10:30:00 -2.20 -0.81 20-APR-2004 11:30:00 -2.20 -0.82 20-APR-2004 12:00:00 -2.33 -0.83 20-APR-2004 12:45:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.33 -0.87 20-APR-2004 13:30:00 -2.40 -0.87 20-APR-2004 13:45:00 -2.33 -0.77 20-APR-2004 14:45:00 -2.33 -0.77 20-APR-2004 14:45:00 -2.33 -0.77 20-APR-2004 14:45:00 -2.33 -0.77 20-APR-2004 15:45:00 -2.33 -0.67 20-APR-2004 15:45:00 -2.33 -0.67 20-APR-2004 16:15:00 -2.37 -0.67 20-APR-2004 16:15:00 -2.33 -0.67 20-APR-2004 16:15:00 -2.33 -0.60 20-APR-2004 16:15:00 -2.20 -0.60 20-APR-2004 16:15:00 -2.20 -0.60 20-APR-2004 16:15:00 -2.20 -0.60	Η-	-1.27	20-APR-2004 06:00:00	-2.20	20-APR-2004 06:00:00	-2.20
-1.10 20-APR-2004 06:30:00 -2.20 -1.20 20-APR-2004 06:45:00 -2.20 -1.33 20-APR-2004 07:45:00 -2.13 -1.07 20-APR-2004 07:45:00 -2.13 -1.00 20-APR-2004 07:45:00 -2.13 -1.00 20-APR-2004 07:45:00 -2.13 -1.00 20-APR-2004 07:45:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.13 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 10:60:00 -2.20 -0.90 20-APR-2004 10:60 -2.20 -0.	_	-1.13	20-APR-2004 06:15:00	-2.13	20-APR-2004 06:15:00	-2.20
-1.20	-	-1.10	20-APR-2004 06:30:00	-2.20	20-APR-2004 06:30:00	-2.13
- 0.93 20-APR-2004 07:00:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.14 -1.10 20-APR-2004 07:15:00 -2.13 -1.10 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 07:15:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.20 -0.97 20-APR-2004 08:00:00 -2.20 -0.97 20-APR-2004 10:00:00 -2.20 -0.93 20-APR-2004 10:00:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.27 -1.10 20-APR-2004 10:15:00 -2.27 -1.10 20-APR-2004 10:15:00 -2.27 -1.10 20-APR-2004 11:15:00 -2.27 -1.10 20-APR-2004 11:15:00 -2.17 -0.87 20-APR-2004 11:15:00 -2.17 -0.87 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:15:00 -2.23 -0.87 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:15:00 -2.10 -0.87 20-APR-2004 11:15:00 -2.20 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.40 -0.87 20-APR-2004 12:15:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.87 20-APR-2004 14:00:00 -2.40 -0.87 20-APR-2004 14:00:00 -2.40 -0.67 20-APR-2004 14:00:00 -2.40 -0.87 20-APR-2004 14:00:00 -2.40 -0.87 20-APR-2004 14:00:00 -2.40 -0.80 20-APR-2004 14:00:00 -2.40 -0.87 20-APR-2004 14:15:00 -2.33 -0.67 20-APR-2004 14:15:00 -2.33 -0.67 20-APR-2004 14:15:00 -2.53 -0.65 20-APR-2004 16:15:00 -2.55 20-APR-2004 16:15:00 -2.55 20-APR-2004 16:15:00 -2.56 -0.50 -0.50 20-APR-2004 16:15:00 -2.56 -0.50 -0.73 20-APR-2004 16:15:00 -2.56 -0.50 -0.73 20-APR-2004 16:10:00 -2.56 -0.50 -0.50 -0.73 20-APR-2004 16:10:00 -2.50 -0.50 -0.50 -0.73 20-APR-2004 16:10:00 -2.50 -0.50 -	-	-1.20	20-APR-2004 06:45:00	-2.20	20-APR-2004 06:45:00	-2.20
-1.07 20-APR-2004 07:15:00 -2.14 -1.10 20-APR-2004 07:30:00 -2.13 -1.07 20-APR-2004 07:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.13 20-APR-2004 08:30:00 -2.20 -0.97 20-APR-2004 08:30:00 -2.20 -0.97 20-APR-2004 08:15:00 -2.20 -0.97 20-APR-2004 08:15:00 -2.20 -0.97 20-APR-2004 09:15:00 -2.20 -0.97 20-APR-2004 10:45:00 -2.27 -1.10 20-APR-2004 10:45:00 -2.17 -0.87 20-APR-2004 10:45:00 -2.17 -0.87 20-APR-2004 11:30:00 -2.17 -0.87 20-APR-2004 11:30:00 -2.27 -0.93 20-APR-2004 11:30:00 -2.27 -0.93 20-APR-2004 11:45:00 -2.27 -0.87 20-APR-2004 12:45:00 -2.33 -1.13 20-APR-2004 12:45:00 -2.40 -0.87 20-APR-2004 12:45:00 -2.40 -0.87 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.33 -0.07 20-APR-2004 14:45:00 -2.40 -0.07 20-APR-2004 14:30:00 -2.40 -0.67 20-APR-2004 14:30:00 -2.40 -0.67 20-APR-2004 15:30:00 -2.41 -0.67 20-APR-2004 15:30:00 -2.47 -0.67 20-APR-2004 15:30:00 -2.53 -0.60 20-APR-2004 15:30:00 -2.53 -0.67 20-APR-2004 15:30:00 -2.53 -0.67 20-APR-2004 15:30:00 -2.53 -0.67 20-APR-2004 15:30:00 -2.53 -0.67 20-APR-2004 16:45:00 -2.53 -0.60	\vdash	-0.93	20-APR-2004 07:00:00	-2.13	20-APR-2004 07:00:00	-2.20
-1.10 20-APR-2004 07:30:00 2.13 -1.00 20-APR-2004 07:45:00 2.13 -1.07 20-APR-2004 08:16:00 2.13 -1.07 20-APR-2004 08:16:00 2.113 -1.07 20-APR-2004 08:30:00 2.13 -1.07 20-APR-2004 08:45:00 2.13 -1.13 20-APR-2004 09:16:00 2.20 -0.97 20-APR-2004 09:16:00 2.20 -0.93 20-APR-2004 10:16:00 2.27 -1.10 20-APR-2004 10:16:00 2.27 -1.10 20-APR-2004 10:30:00 2.27 -1.10 20-APR-2004 11:30:00 2.27 -0.87 20-APR-2004 11:30:00 2.27 -0.87 20-APR-2004 11:30:00 2.27 -0.87 20-APR-2004 11:30:00 2.27 -0.87 20-APR-2004 12:30:00 2.27 -0.87 20-APR-2004 12:30:00 2.23 -0.87 20-APR-2004 12:30:00 2.27 -0.67 20-APR-2004 12:30:00 2.27 -0.67 20-APR-2004 12:30:00 2.27 -0.67 20-APR-2004 12:30:00 2.23 -0.60 20-APR-2004 14:30:00 2.24 -0.67 20-APR-2004 14:30:00 2.24 -0.67 20-APR-2004 14:30:00 2.24 -0.67 20-APR-2004 15:15:00 2.23 -0.60 20-APR-2004 16:00:00 2.24 -0.67 20-APR-2004 16:00:00 2.25 -0.60 20-APR-2004 16:00:00 2.260	_	-1.07	20-APR-2004 07:15:00		20-APR-2004 07:15:00	-2.17
-1.00 20-APR-2004 07:45:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.07 20-APR-2004 08:00:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.13 -1.10 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 09:45:00 -2.20 -0.90 20-APR-2004 10:15:00 -2.20 -0.90 20-APR-2004 10:15:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.17 -1.10 20-APR-2004 10:15:00 -2.20 -0.87 20-APR-2004 11:5:00 -2.17 -0.83 20-APR-2004 11:45:00 -2.33 -0.67 20-APR-2004 12:30:00 -2.33 -0.67 20-APR-2004 12:30:00 -2.33 -0.67 20-APR-2004 12:45:00 -2.33 -0.67 20-APR-2004 12:30:00 -2.40 -0.87 20-APR-2004 12:30:00 -2.40 -0.87 20-APR-2004 12:30:00 -2.33 -0.67 20-APR-2004 12:30:00 -2.33 -0.67 20-APR-2004 12:30:00 -2.33 -0.67 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 13:00:00 -2.40 -0.60 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 15:00:00 -2.40 -0.60 20-APR-2004 16:00:00 -2.41 -0.60 20-APR-2004 16:00:00 -2.41 -0.60 20-APR-2004 16:00:00 -2.41 -0.60 20-APR-2004 16:00:00 -2.60		-1.10	20-APR-2004 07:30:00	-2.13	20-APR-2004 07:30:00	-2.20
-1.07 20-APR-2004 08:00:00 -2.13 -0.90 20-APR-2004 08:15:00 -2.10 -1.07 20-APR-2004 08:15:00 -2.13 -1.07 20-APR-2004 08:45:00 -2.13 -1.13 20-APR-2004 08:45:00 -2.20 -0.90 20-APR-2004 09:45:00 -2.20 -0.90 20-APR-2004 10:15:00 -2.20 -0.90 20-APR-2004 10:10:00 -2.20 -0.93 20-APR-2004 10:10:00 -2.20 -0.87 20-APR-2004 10:10:00 -2.20 -0.87 20-APR-2004 11:5:00 -2.17 -0.93 20-APR-2004 11:5:00 -2.17 -0.93 20-APR-2004 11:5:00 -2.10 -0.87 20-APR-2004 11:5:00 -2.10 -0.87 20-APR-2004 12:00:00 -2.20 -0.87 20-APR-2004 12:00:00 -2.20 -0.87 20-APR-2004 12:00:00 -2.33 -0.87 20-APR-2004 12:00:00 -2.40 -0.87 20-APR-2004 12:00:00 -2.40 -0.87 20-APR-2004 12:00:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.33 -0.77 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 15:00:00 -2.40 -0.60 20-APR-2004 16:15:00 -2.31 -0.65 20-APR-2004 16:15:00 -2.31 -0.65 20-APR-2004 16:15:00 -2.31 -0.65 20-APR-2004 16:15:00 -2.51 -0.65 20-APR-2004 16:15:00 -2.51 -0.60 20-APR-2004 16:15:00 -2.51 -0.65 20-APR-2004 16:10:00 -2.51 -0.65 20-APR-2004 17:00:00 -2.51 -0.65 20-APR-2004 17:00:00 -2.51 -0.6		-1.00	20-APR-2004 07:45:00	-2.13	20-APR-2004 07:45:00	-2.20
-0.90 20-APR-2004 08:15:00 -2.10 -1.07 20-APR-2004 08:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.20 -0.97 20-APR-2004 09:45:00 -2.20 -0.93 20-APR-2004 10:15:00 -2.20 -0.87 20-APR-2004 10:30:00 -2.20 -0.87 20-APR-2004 10:30:00 -2.20 -0.87 20-APR-2004 10:30:00 -2.20 -0.87 20-APR-2004 10:30:00 -2.17 -0.87 20-APR-2004 11:30:00 -2.17 -0.87 20-APR-2004 11:30:00 -2.13 -0.87 20-APR-2004 11:30:00 -2.13 -0.87 20-APR-2004 12:30:00 -2.13 -0.87 20-APR-2004 12:00:00 -2.13 -0.87 20-APR-2004 12:00:00 -2.40 -0.67 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 14:00:00 -2.40 -0.60 20-APR-2004 14:30:00 -2.41 -0.60 20-APR-2004 14:30:00 -2.33 -0.60 20-APR-2004 16:30:00 -2.47 -0.60 20-APR-2004 16:30:00 -2.53 -0.60 20-APR-2004 16:30:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.63 -0.60 20-APR-2004 16:45:00 -2.63 -0.60 20-APR-2004 16:45:00 -2.63 -0.60 20-APR-2004 16:40:00 -2.60 -0.60 20-APR-2004 16:40:00 -2.60		-1.07	20-APR-2004 08:00:00	-2.13	20-APR-2004 08:00:00	-2.27
-1.07 20-APR-2004 08:30:00 -2.13 -1.07 20-APR-2004 08:30:00 -2.13 -1.13 20-APR-2004 09:00:00 -2.20 -0.97 20-APR-2004 09:00:00 -2.20 -0.93 20-APR-2004 10:00:00 -2.20 -0.87 20-APR-2004 10:00:00 -2.20 -0.87 20-APR-2004 10:00:00 -2.20 -0.93 20-APR-2004 11:00:00 -2.20 -0.93 20-APR-2004 11:00:00 -2.17 -0.87 20-APR-2004 11:00:00 -2.17 -0.87 20-APR-2004 11:00:00 -2.17 -0.87 20-APR-2004 11:00:00 -2.20 -0.93 20-APR-2004 12:00 -2.13 -0.87 20-APR-2004 12:00 -2.13 -0.87 20-APR-2004 12:00 -2.13 -0.87 20-APR-2004 12:00 -2.13 -0.87 20-APR-2004 12:00 -2.33 -0.87 20-APR-2004 12:00 -2.33 -0.87 20-APR-2004 12:00 -2.40 -0.67 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 13:15:00 -2.33 -0.67 20-APR-2004 14:00:00 -2.40 -0.60 20-APR-2004 15:00:00 -2.37 -0.60 20-APR-2004 16:00:00 -2.37 -0.60 20-APR-2004 16:00:00 -2.37 -0.67 20-APR-2004 16:00:00 -2.37 -0.60 20-APR-2004 16:	_	-0.90	20-APR-2004 08:15:00	-2.10	20-APR-2004 08:15:00	-2.27
-1.07 20-APR-2004 08:45:00 -2.13 -1.13 20-APR-2004 09:05:00 -2.20 -0.97 20-APR-2004 09:05:00 -2.20 -0.90 20-APR-2004 09:05:00 -2.20 -0.93 20-APR-2004 10:05:00 -2.17 -0.87 20-APR-2004 10:05:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:25:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.13 -0.87 20-APR-2004 12:15:00 -2.27 -1.10 20-APR-2004 12:15:00 -2.27 -0.83 20-APR-2004 12:15:00 -2.27 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.33 -0.67 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 14:00:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.33 -0.67 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:15:00 -2.47 -0.60 20-APR-2004 16:10:00 -2.47 -0.60 20-APR-2004 16:10:00 -2.47 -0.60 20-APR-2004 16:10:00 -2.47	-+-	-1.07	20-APR-2004 08:30:00	-2.13	20-APR-2004 08:30:00	-2.23
-0.97 20-APR-2004 09:00.00 -0.97 20-APR-2004 09:00.00 -0.90 2.27 -0.90 20-APR-2004 09:00 -0.93 20-APR-2004 10:00.00 -0.93 20-APR-2004 10:00 -0.93 20-APR-2004 11:00.00 -0.93 20-APR-2004 11:00.00 -0.93 20-APR-2004 11:00.00 -0.93 20-APR-2004 11:00.00 -0.87 20-APR-2004 11:00.00 -0.87 20-APR-2004 11:00.00 -0.87 20-APR-2004 12:00:00 -0.87 20-APR-2004 12:00:00 -0.87 20-APR-2004 12:00:00 -0.87 20-APR-2004 13:00:00 -0.87 20-APR-2004 14:00:00 -0.07 20-APR-2004 14:00:00 -0.07 20-APR-2004 14:00:00 -0.07 20-APR-2004 14:00:00 -0.07 20-APR-2004 15:00:00 -0.07 20-APR-2004 15:00:00 -0.08 20-APR-2004 15:00:00 -0.08 20-APR-2004 15:00:00 -0.09 20-APR-2004 16:00:00 -0.00 20-APR-200	1	1.07	20 APR-2004 08:45:00	-2.13	20-APR-2004 08:45:00	-2.20
0.90 20-APR-2004 03:15:00 2.27 -0.90 20-APR-2004 03:30:00 2.27 -1.10 20-APR-2004 10:00:00 2.20 -0.87 20-APR-2004 10:15:00 2.27 -0.87 20-APR-2004 10:45:00 2.27 -0.83 20-APR-2004 11:30:00 2.27 -0.93 20-APR-2004 11:30:00 2.27 -0.93 20-APR-2004 11:45:00 2.27 -0.83 20-APR-2004 11:45:00 2.23 -0.87 20-APR-2004 12:45:00 2.23 -0.87 20-APR-2004 12:45:00 2.240 -0.87 20-APR-2004 13:15:00 2.240 -0.87 20-APR-2004 13:15:00 2.240 -0.67 20-APR-2004 14:15:00 2.240 -0.67 20-APR-2004 16:15:00 2.241 -0.67 20-APR-2004 16:15:00 2.241 -0.67 20-APR-2004 16:15:00 2.247 -0.67 20-APR-2004 16:15:00 2.247 -0.67 20-APR-2004 16:15:00 2.247 -0.67 20-APR-2004 16:15:00 2.247 -0.67 20-APR-2004 16:15:00 2.247 -0.60 20-APR-2004 16:15:00 2.247 -0.60 20-APR-2004 16:15:00 2.247 -0.60 20-APR-2004 16:15:00 2.253 -0.60 20-APR-2004 16:15:00 2.263 -0.60 20-APR-2004 16:15:00 2.263 -0.60 20-APR-2004 16:15:00 2.263	٦.	70.0	20 ADP 2004 09:00:00	2.20	20-APR-2004 09:00:00	2.20
-1.10 20-APR-2004 09:45:00 -2.20 -0.93 20-APR-2004 10:00:00 -2.20 -0.87 20-APR-2004 10:15:00 -2.27 -0.80 20-APR-2004 10:45:00 -2.27 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:15:00 -2.23 -0.83 20-APR-2004 12:15:00 -2.27 -0.93 20-APR-2004 12:15:00 -2.27 -0.87 20-APR-2004 13:15:00 -2.33 -0.77 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:15:00 -2.41 -0.60 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.53 -0.67 20-APR-2004 16:00:00 -2.65 -0.60 20-APR-2004 16:15:00 -2.63 -0.60 20-APR-2004 16:15:00 -2.63 -0.60 20-APR-2004 16:15:00 -2.63 -0.60 20-APR-2004 16:15:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.69 -0.60 20-APR-2004 16:30:00 -2.69	1	06:0-	20-APR-2004 09:30:00	-2.27	20-APR-2004 09:15:00	-2.20
-0.93 20-APR-2004 10:00:00 -2.20 -0.87 20-APR-2004 10:15:00 -2.27 -0.80 20-APR-2004 10:15:00 -2.27 -0.80 20-APR-2004 10:15:00 -2.27 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.24 -0.87 20-APR-2004 12:15:00 -2.24 -0.87 20-APR-2004 12:15:00 -2.40 -0.87 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:30:00 -2.40 -0.77 20-APR-2004 13:30:00 -2.40 -0.77 20-APR-2004 14:30:00 -2.40 -0.60 20-APR-2004 14:30:00 -2.40 -0.60 20-APR-2004 14:30:00 -2.41 -0.60 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:30:00 -2.47 -0.67 20-APR-2004 16:30:00 -2.47 -0.67 20-APR-2004 16:30:00 -2.4	<u>_</u>	-1.10	20-APR-2004 09:45:00	-2.20	20-APR-2004 09:45:00	-2.20
-0.87 20-APR-2004 10:15:00 -2.17 -0.87 20-APR-2004 10:30:00 -2.20 -0.80 20-APR-2004 10:30:00 -2.20 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:45:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 13:15:00 -2.40 -0.87 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:30:00 -2.41 -0.60 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:30:00 -2.47 -0.80 20-APR-2004 16:15:00 -2.53 -0.60 20-APR-2004 16:15:00 -2.53 -0.60 20-APR-2004 16:15:00 -2.53 -0.60 20-APR-2004 16:15:00 -2.53 -0.60 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63		-0.93	20-APR-2004 10:00:00		20-APR-2004 10:00:00	
-0.87 20-APR-2004 10:30:00 -2.20 -0.80 20-APR-2004 10:45:00 -2.27 -1.10 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 11:45:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:15:00 -2.40 -0.87 20-APR-2004 13:15:00 -2.40 -0.87 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:30:00 -2.53 -0.53 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63		-0.87	20-APR-2004 10:15:00		20-APR-2004 10:15:00	
-0.80 20-APR-2004 10:45:00 -2.27 -1.10 20-APR-2004 11:00:00 -2.20 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:15:00 -2.13 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.33 -0.93 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 16:15:00 -2.47 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:15:00 -2.53 -0.67 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63 -0.60 20-APR-2004 16:30:00 -2.63		-0.87	20-APR-2004 10:30:00		20-APR-2004 10:30:00	
-1.10 20-APR-2004 11:00:00 -2.20 -0.93 20-APR-2004 11:15:00 -2.17 -0.93 20-APR-2004 11:30:00 -2.13 -0.87 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:30:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 13:00:00 -2.40 -0.77 20-APR-2004 13:00:00 -2.40 -0.77 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:45:00 -2.40 -0.60 20-APR-2004 15:30:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.60		-0.80	20-APR-2004 10:45:00		20-APR-2004 10:45:00	
-0.93 20-APR-2004 11;15;00 -2.17 -0.93 20-APR-2004 11;30:00 -2.10 -0.87 20-APR-2004 11;00:00 -2.23 -0.83 20-APR-2004 12:15:00 -2.27 -0.87 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 13:00:00 -2.40 -0.67 20-APR-2004 13:15:00 -2.40 -0.77 20-APR-2004 13:15:00 -2.40 -0.73 20-APR-2004 14:10:00 -2.33 -0.60 20-APR-2004 14:00:00 -2.40 -0.67 20-APR-2004 14:00:00 -2.33 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:00:00 -2.53 -0.67 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.60	٦t	-1.10	20-APR-2004 11:00:00	-2.20	20-APR-2004 11:00:00	-2.33
-0.87 20-APR-2004 11:30:00 -2.13 -0.67 20-APR-2004 11:30:00 -2.13 -0.67 20-APR-2004 12:00:00 -2.23 -0.83 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.33 -0.87 20-APR-2004 12:45:00 -2.40 -0.67 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 14:45:00 -2.40 -0.67 20-APR-2004 14:45:00 -2.40 -0.67 20-APR-2004 14:45:00 -2.40 -0.67 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.47 -0.80 20-APR-2004 16:15:00 -2.47 -0.60 20-APR-2004 16:15:00 -2.63 20-APR-2004 16:45:00 -2.63 20-APR-2004 16:45:00 -2.63 -0.63 20-APR-2004 16:45:00 -2.60 -0.63 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	1	0.83	20-APR-2004 11:15:00	-2.17	20-APR-2004 11:15:00	-2.27
-0.67 20-APR-2004 12:00:00 -2.23 -0.87 20-APR-2004 12:00:00 -2.23 -0.83 20-APR-2004 12:15:00 -2.23 -0.87 20-APR-2004 12:15:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.40 -0.93 20-APR-2004 13:15:00 -2.40 -0.87 20-APR-2004 13:00 -2.40 -0.67 20-APR-2004 14:15:00 -2.40 -0.77 20-APR-2004 14:15:00 -2.23 -0.47 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 15:15:00 -2.41 -0.67 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 15:15:00 -2.37 -0.67 20-APR-2004 16:15:00 -2.47 -0.80 20-APR-2004 16:15:00 -2.47 -0.63 20-APR-2004 16:45:00 -2.63 20-APR-2004 16:45:00 -2.60 -0.63 20-APR-2004 16:45:00 -2.60 -0.63 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	راد	-0.93	20-AFR-2004 11.30.00	2.10	20-APR-2004 11.30.00	-2.40
-0.83 20-APR-2004 12:15:00 -2.27 -0.87 20-APR-2004 12:00 -2.33 -0.93 20-APR-2004 12:45:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.77 20-APR-2004 13:00:00 -2.40 -0.77 20-APR-2004 14:00:00 -2.33 -0.77 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 14:45:00 -2.40 -0.60 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 15:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:00:00 -2.47 -0.67 20-APR-2004 16:45:00 -2.53 -0.67 20-APR-2004 16:45:00 -2.53 -0.67 20-APR-2004 16:45:00 -2.53 -0.63 20-APR-2004 16:45:00 -2.60	1	-0.67	20-APR-2004 12:00:00	-2.23	20-APR-2004 12:00:00	-2.47
-0.87 20-APR-2004 12:30:00 -2.33 -1.13 20-APR-2004 12:45:00 -2.33 -0.93 20-APR-2004 13:00:00 -2.40 -0.87 20-APR-2004 13:00:00 -2.40 -0.77 20-APR-2004 13:00:00 -2.33 -0.73 20-APR-2004 14:00:00 -2.33 -0.60 20-APR-2004 14:15:00 -2.40 -0.60 20-APR-2004 14:45:00 -2.40 -0.60 20-APR-2004 15:00:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.41 -0.87 20-APR-2004 16:00:00 -2.47 -0.63 20-APR-2004 16:00:00 -2.53 -0.63 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.60 -0.63 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	6	-0.83	20-APR-2004 12:15:00	-2.27	20-APR-2004 12:15:00	-2.47
-1.13 20-APR-2004 12:45:00 -2.33	6	-0.87	20-APR-2004 12:30:00	-2.33	20-APR-2004 12:30:00	-2.33
-0.93 20-APR-2004 13:00:00 -2.40 -0.87 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 13:30:00 -2.40 -0.77 20-APR-2004 13:30:00 -2.33 -0.73 20-APR-2004 14:00:00 -2.33 -0.60 20-APR-2004 14:30:00 -2.40 -0.60 20-APR-2004 14:45:00 -2.40 -0.60 20-APR-2004 15:15:00 -2.40 -0.67 20-APR-2004 15:00:00 -2.41 -0.67 20-APR-2004 15:00:00 -2.33 -0.67 20-APR-2004 16:00:00 -2.41 -0.87 20-APR-2004 16:00:00 -2.47 -0.63 20-APR-2004 16:45:00 -2.53 -0.63 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	6	-1.13	20-APR-2004 12:45:00	-2.33	20-APR-2004 12:45:00	-2.30
-0.87 20-APR-2004 13:15:00 -2.40 -0.67 20-APR-2004 13:30:00 -2.40 -0.77 20-APR-2004 13:30:00 -2.40 -0.73 20-APR-2004 14:00:00 -2.33 -0.73 20-APR-2004 14:00:00 -2.33 -0.60 20-APR-2004 14:30:00 -2.40 -0.60 20-APR-2004 14:45:00 -2.40 -0.67 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:30:00 -2.37 -0.67 20-APR-2004 15:30:00 -2.41 -0.87 20-APR-2004 16:00:00 -2.47 -0.63 20-APR-2004 16:15:00 -2.53 -0.63 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	0	-0.93	20-APR-2004 13:00:00	-2.40	20-APR-2004 13:00:00	-2.30
-0.67 20-APR-2004 13:30:00 -2.40 -0.77 20-APR-2004 13:45:00 -2.33 -0.73 20-APR-2004 14:00:00 -2.27 -0.47 20-APR-2004 14:15:00 -2.33 -0.60 20-APR-2004 14:30:00 -2.40 -0.60 20-APR-2004 14:45:00 -2.40 -0.67 20-APR-2004 15:15:00 -2.40 -0.67 20-APR-2004 15:15:00 -2.33 -0.67 20-APR-2004 15:30:00 -2.41 -0.87 20-APR-2004 16:30:00 -2.47 -0.53 20-APR-2004 16:30:00 -2.53 -0.53 20-APR-2004 16:45:00 -2.53 -0.53 20-APR-2004 16:45:00 -2.53 -0.60 20-APR-2004 16:45:00 -2.53		-0.87	20-APR-2004 13:15:00	-2.40	20-APR-2004 13:15:00	-2.47
-0.77 20-APR-2004 13:45:00 -2.33 20-APR-2004 13:45:00 -2.27 20-APR-2004 14:00:00 -2.27 20-APR-2004 14:00:00 -2.33 20-APR-2004 14:15:00 -2.33 20-APR-2004 14:15:00 -2.40 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 15:00:00 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:30:00 -2.33 20-APR-2004 16:30:00 -2.41 20-APR-2004 16:00:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	╗	-0.67	20-APR-2004 13:30:00	-2.40	20-APR-2004 13:30:00	-2.33
-0.73 20-APR-2004 14:00:00 -2.27 20-APR-2004 14:00:00 -2.33 20-APR-2004 14:15:00 -2.33 20-APR-2004 14:15:00 -2.40 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 16:00:00 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:30:00 -2.33 20-APR-2004 16:30:00 -2.37 20-APR-2004 16:30:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004		-0.77	20-APR-2004 13:45:00	-2.33	20-APR-2004 13:45:00	-2.33
-0.47 20-APR-2004 14:15:00 -2.33 20-APR-2004 14:2004 -0.60 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 16:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:30:00 -2.33 20-APR-2004 15:30:00 -2.37 20-APR-2004 16:30:00 -2.41 20-APR-2004 16:00:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	╗	-0.73	20-APR-2004 14:00:00	-2.27	20-APR-2004 14:00:00	-2.33
-0.60 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:30:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 14:45:00 -2.40 20-APR-2004 16:00:00 -2.40 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.63 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:30:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004		-0.47	20-APR-2004 14:15:00	-2.33	20-APR-2004 14:15:00	-2.43
-0.80 20-APR-2004 14:45:00 -2.40 20-APR-2004 16:500 -2.60 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:40:00 -2.60 20-APR-2004 16:40:00 -2.60 20-APR-2004 16:40:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	_	-0.60	20-APR-2004 14:30:00	-2.40	20-APR-2004 14:30:00	-2.53
-0.60 20-APR-2004 15:00:00 -2.40 20-APR-2004 15:00:00 -2.33 20-APR-2004 15:15:00 -2.33 20-APR-2004 15:15:00 -2.33 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	ᅿ	-0.80	20-APR-2004 14:45:00	-2.40	20-APR-2004 14:45:00	-2.60
-0.67 20-APR-2004 15:15:00 -2.33 20-APR-2004 15:30:00 -2.33 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.41 20-APR-2004 16:30:00 -2.47 20-APR-2004 16:30:00 -2.47 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:30:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	_	-0.60	20-APR-2004 15:00:00	-2.40	20-APR-2004 15:00:00	-2.60
-0.67 20-APR-2004 15:30:00 -2.37 20-APR-2004 15:30:00 -2.41 20-APR-2004 15:45:00 -2.41 20-APR-2004 15:45:00 -2.41 20-APR-2004 16:00:00 -2.47 20-APR-2004 16:00:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:45:00 -2.60 20-APR-2004 16:45:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	_	-0.67	20-APR-2004 15:15:00	-2.33	20-APR-2004 15:15:00	-2.97
-0.80 20-APR-2004 15:45:00 -2.41 20-APR-2004	+	-0.67	20-APR-2004 15:30:00	-2.37	20-APR-2004 15:30:00	-2.74
-0.87 20-APR-2004 6:00:00 -2.47 20-APR-2004 6:00:00 -2.53 20-APR-2004 6:15:00 -2.53 20-APR-2004 6:30:00 -2.53 20-APR-2004 6:30:00 -2.53 20-APR-2004 6:30:00 -2.63 20-APR-2004 6:45:00 -2.60 20-APR-2004 6:45:00 -2.60 20-APR-2004 7:00:00 -2.60 20-APR-2004 7:00:00 -2.60 20-APR-2004 7:00:00 -2.60 20-APR-2004 7:00:00 -2.60	_	-0.80	20-APR-2004 15:45:00	-2.41	20-APR-2004 15:45:00	-2.60
-0.53 20-APR-2004 16:15:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.53 20-APR-2004 16:30:00 -2.63 20-APR-2004 16:45:00 -2.60 20-APR-2004 17:00:00 -2.60 20-APR-2004	\dashv	-0.87	20-APR-2004 16:00:00	-2.47	20-APR-2004 16:00:00	-2.67
-0.53 20-APR-2004 16:30:00 -2.53 20-APR-2004	-+	-0.53	20-APR-2004 16:15:00	-2.53	20-APR-2004 16:15:00	-2.74
-0.50 20-APR-2004 16:45:00 -2.60 -0.73 20-APR-2004 17:00:00 -2.60	+	-0.53	20-APR-2004 16:30:00	-2.53	20-APR-2004 16:30:00	-2.67
-0.73 Z0-APR-Z004 17:00:00 -2.60	+	-0.60	20-APR-2004 16:45:00	-2.60	20-APR-2004 16:45:00	-2.67
	+	-0.73	20-APR-2004 17:00:00	-2.60	20-APR-2004 17:00:00	-2.74

Elevation Comparison Comp		(CRCW - Lake)		(CRCW - River)		(Willow Springs)
0.87 20.APR-2004 (73300 2.66 20.APR-2004 (73300 0.073 20.APR-2004 (73300 2.60 20.APR-2004 (73300 0.080 20.APR-2004 (83500 2.60 20.APR-2004 (83500 0.081 20.APR-2004 (83500 2.60 20.APR-2004 (83500 0.087 20.APR-2004 (83500 2.60 20.APR-2004 (83500 0.080 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.081 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.082 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.083 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.093 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.093 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.010 20.APR-2004 (84500 2.60 20.APR-2004 (84500 0.010 20.APR-2004 (24500 2.60 20.APR-2004 (24500 0.010 20.APR-2004 (24500 2.60 20.APR-2004 (24500 0.010 20.APR-2004 (24500 2.60 20.APR-2004 (24500	Time	Elevation	Time	Elevation	Time	Elevation
-0.73 2.0-APR-2004 1874500 -2.69 2.0-APR-2004 187500 -0.63 2.0-APR-2004 187000 -2.69 2.0-APR-2004 187500 -0.63 2.0-APR-2004 187000 -2.69 2.0-APR-2004 187500 -0.80 2.0-APR-2004 187000 -2.69 2.0-APR-2004 187500 -0.80 2.0-APR-2004 187000 -2.67 2.0-APR-2004 187000 -0.81 2.0-APR-2004 201500 -2.67 2.0-APR-2004 201500 -0.73 2.0-APR-2004 201500 -2.69 2.0-APR-2004 201500 -0.10 2.0-APR-2004 201500 -2.67 2.0-APR-2004 201500 -0.10 2.0-APR-2004 201500 -2.69 2.0-APR-2004 201500 -0.10 2.0-APR-2004 201500 -2.67 2.0-APR-2004 201500 -0.10 2.0-APR-2004 201500 -2.67 2.0-APR-2004 201500 -0.10 2.0-APR-2004 201500 -2.67	17:30:00	-0.87	20-APR-2004 17:30:00	-2.60	20-APR-2004 17:30:00	-2.80
-0.80 DAAPR-2004 18:00:00 -2.60 DAAPR-2004 18:00:00 -0.60 20APR-2004 18:00:00 -2.60 20APR-2004 18:00:00 -0.73 20APR-2004 20:00:00 -2.60 20APR-2004 20:00:00 -0.73 20APR-2004 20:16:00 -2.60 20APR-2004 20:00:00 -0.73 20APR-2004 20:16:00 -2.60 20APR-2004 20:00:00 -0.73 20APR-2004 20:16:00 -2.60 20APR-2004 20:00:00 -0.74 20APR-2004 20:00:00 -2.60 20APR-2004 20:00:00 -0.74 20APR-2004 20:00:00 -2.60 20APR-2004 20:00:00 -0.74 20APR-2004 20:00:00:00 -2.60 20APR-2004 21:00:00 -0.75 20APR-2004 20:00:00:00:00 -2.60<	17:45:00	-0.73	20-APR-2004 17:45:00	-2.60	20-APR-2004 17:45:00	-2.74
0.53 20APR-2004 18.15.00 2.50 20APR-2004 18.15.00 0.80 20APR-2004 18.15.00 2.60 20APR-2004 18.15.00 0.80 20APR-2004 18.100 2.61 20APR-2004 18.100 0.81 20APR-2004 18.100 2.61 20APR-2004 18.200 0.82 20APR-2004 18.100 2.61 20APR-2004 19.000 0.83 20APR-2004 18.100 2.67 20APR-2004 19.500 0.84 20APR-2004 18.100 2.67 20APR-2004 19.500 0.85 20APR-2004 20.100 2.67 20APR-2004 20.1000 0.87 20APR-2004 21.100 2.67 20APR-2004 21.1000 0.87 20APR-2004 21.100 2.69 20APR-2004 21.1000 0.87 20APR-2004 21.100 2.60 20APR-2004 21.1000 0.89 20APR-2004 21.100 2.60 20APR-2004 21.1000 0.80 20APR-2004 21.1000 2.60 20APR-2004 21.1000 0.80 20APR-2004 21.1000 2.60 20APR-2004 21.1000 0.80 20APR-2004 21.1000 2.60 20APR-2004 21.1000 0.80 <td>18:00:00</td> <td>-0.80</td> <td>20-APR-2004 18:00:00</td> <td>-2.60</td> <td>20-APR-2004 18:00:00</td> <td>-2.80</td>	18:00:00	-0.80	20-APR-2004 18:00:00	-2.60	20-APR-2004 18:00:00	-2.80
0.80 20APR-2004 18:3000 2.80 20APR-2004 18:3000 0.80 20APR-2004 18:3000 2.80 20APR-2004 18:3000 0.81 20APR-2004 18:3000 2.81 20APR-2004 18:3000 0.87 20APR-2004 18:1500 2.87 20APR-2004 18:4000 0.93 20APR-2004 18:1500 2.87 20APR-2004 18:4500 0.073 20APR-2004 20:3000 2.87 20APR-2004 20:3000 0.073 20APR-2004 20:3000 2.80 20APR-2004 20:3000 0.100 20APR-2004 20:3000 2.80 20APR-2004 20:4000 0.101 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.102 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.103 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.104 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.107 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.107 20APR-2004 20:4000 2.80 20APR-2004 20:4000 0.107 20APR-2004 20:4000 2.80 20APR-2004 20:4000	18-15-00	55.0-	20-4PR-2004 18 15:00	-2 60	20-APR-2004 18:15:00	-2 80
-0.00 20-APR-2004 18:4500 2.59 20-APR-2004 18:4500 -0.00 20-APR-2004 18:4500 2.567 20-APR-2004 18:4500 -0.80 20-APR-2004 18:4500 2.61 20-APR-2004 18:4500 -0.93 20-APR-2004 18:4500 2.61 20-APR-2004 18:4500 -0.73 20-APR-2004 20:4000 2.67 20-APR-2004 20:4000 -0.73 20-APR-2004 20:4000 2.69 20-APR-2004 20:4000 -0.73 20-APR-2004 20:4000 2.60 20-APR-2004 20:4000 -0.07 20-APR-2004 20:4000 2.60 20-APR-2004 20:4000 -0.08 20-APR-2004 20:4000 2.60 20-APR-2004 20:4000 -0.09 20-APR-2004 20:4000 2.60 20-APR-2004 20:4000 -0.07 20-APR-2004 20:4000 2.60 20-APR-	18-30-00	08.0-	20-APR-2004 18:30:00	-2 60	20-APR-2004 18:30:00	77.6-
0.80 2.PAPR 7.2004 (19.000) 2.50 2.AAPR 7.2004 (19.000) 0.87 2.DAPR 7.2004 (19.000) 2.50 2.AAPR 7.2004 (19.000) 0.87 2.DAPR 7.2004 (19.000) 2.67 2.DAPR 7.2004 (19.000) 0.93 2.DAPR 7.2004 (19.000) 2.67 2.DAPR 7.2004 (19.000) 0.07 2.DAPR 7.2004 (20.000) 2.60 2.0APR 7.2004 (20.000) 0.10 2.DAPR 7.2004 (20.000) 2.60 2.DAPR 7.2004 (20.000) 0.10 2.DAPR 7.2004 (20.000) 2.60 2.0APR 7.2004 (20.000) 0.10 2.DAPR 7.2004 (20.000) 2.60 2.DAPR 7.2004 (20.000) 0.10 <	40.45.00	80.0	20 ABB 2004 49:45:00	20.2	20 ABB 2004 18:45:00	Cac
0.89 ZUAPR ZODA 191500 2.581 ZUAPR ZODA 191500 0.93 ZOAPR ZODA 191500 2.581 ZUAPR ZODA 191500 0.73 ZOAPR ZODA 194500 2.587 ZUAPR ZODA 191500 0.73 ZOAPR ZODA 194500 2.587 ZUAPR ZODA 201500 0.73 ZOAPR ZODA 201500 2.587 ZUAPR ZODA 201500 0.73 ZOAPR ZODA 210000 2.69 ZUAPR ZODA 210000 0.73 ZOAPR ZODA 210000 2.60 ZUAPR ZODA 210000 0.70 ZUAPR ZODA 210000 2.60 ZUAPR ZODA 210000 0.71 ZUAPR ZODA 210000 2.60 ZUAPR ZODA 2115000 0.71 ZUAPR ZODA 210000 2.60 ZUAPR ZODA 2115000 0.71 ZUAPR ZODA 2115000 2.60 ZUAPR ZODA 2115000 0.71 ZUAPR ZODA 2115000 2.50 ZUAPR ZODA 2115000 0.71 ZUAPR ZODA 2115000 2.53 ZUAPR ZODA 2115000 0.72 ZUAPR ZODA 2115000 2.23 ZUAPR ZODA 2115000 0.73 ZUAPR ZODA 2115000 2.247 ZUAPR ZODA 2115000 0.73	0.45.00	0.00	20-AFR-2004 10:43:00	-2.00	20 A PR 2004 18:45:00	-2.90
- 0.83 20-ARR-2004 193000 - 2.67 20-ARR-2004 183000 - 0.63 20-ARR-2004 193000 - 2.67 20-ARR-2004 183000 - 0.63 20-ARR-2004 20000 - 2.67 20-ARR-2004 200000 - 0.73 20-ARR-2004 200000 - 2.67 20-ARR-2004 200000 - 0.73 20-ARR-2004 2015000 - 2.67 20-ARR-2004 201500 - 0.73 20-ARR-2004 2015000 - 2.67 20-ARR-2004 2015000 - 0.67 20-ARR-2004 2015000 - 2.69 20-ARR-2004 2015000 - 0.67 20-ARR-2004 2015000 - 2.67 20-ARR-2004 2015000 - 0.67 20-ARR-2004 2015000 - 2.63 20-ARR-2004 2015000 - 0.67 21-ARR-2004 0015000 - 2.67 21-ARR-2004 0015000 - 0.67 21-ARR-2004 0015000 - 2.47 21-ARR-2004 0015000 - 0.67 21-ARR-2004 0010000 - 2.47 21-ARR-2004 0015000 - 0.67 21-ARR-2004 0010000 - 2.47 21-ARR-2004 0015000 - 0.67 21-ARR-2004 0010000 - 2.47 21-ARR-2004 0010000 - 0.68 21-ARR-2004 0010000 - 2.47 21-ARR-2004 0010000 - 2.47 21-ARR-2004 0010	3.00.00	-0.00	20-71-004 19:00:00	25.07	20 APP 2004 19:00:00	-2.00
0.533 20-APR-22004 194500 -2.667 20-APR-22004 194500 -0.73 20-APR-22004 194500 -2.67 20-APR-22004 194500 -0.73 20-APR-22004 204500 -2.67 20-APR-22004 204500 -0.73 20-APR-22004 204500 -2.69 20-APR-22004 204500 -0.73 20-APR-22004 204500 -2.67 21-APR-22004 004500 -2.6	9:15:00	-0.87	20-AFR-2004 19:15:00	10.2-	ZU-AFR-ZU04 19.15.00	-2.03
0.073 20-APR-2004 300.00 2.67 20-APR-2004 1845.00 0.080 20-APR-2004 20.000 0.080 20-APR-2004 20.000 0.080 20-APR-2004 20.000 0.087 20-APR-2004 20.000 0.267 20-APR-2004 20.000 0.087 20-APR-2004 20.000 0.267 20-APR-2004 20.000 0.087 20-APR-2004 20.000 0.267 20-APR-2004 20.1000 0.087 20-APR-2004 20.000 0.267 20-APR-2004 20.1000 0.080 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.080 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.073 20-APR-2004 20.1000 0.073 20-APR-2004 20.1000 0.073 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.073 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.267 20-APR-2004 20.1000 0.087 20-APR-2004 20.1000 0.097 20-APR-2	19:30:00	-0.93	20-APR-2004 19:30:00	-2.67	20-APR-2004 19:30:00	-2.8/
0.80 20-APR-2004 200000 -2.67 20-APR-2004 200000 -0.73 20-APR-2004 2015000 -2.80 20-APR-2004 201500 -0.73 20-APR-2004 2015000 -2.80 20-APR-2004 201500 -0.87 20-APR-2004 2015000 -0.87 20-APR-2004 2015000 -2.80 20-APR-2004 2015000 -0.87 20-APR-2004 2115000 -2.80 20-APR-2004 211500 -0.87 20-APR-2004 2115000 -2.80 20-APR-2004 2115000 -0.57 20-APR-2004 2115000 -2.80 20-APR-2004 211500 -0.57 20-APR-2004 2115000 -2.80 20-APR-2004 211500 -0.57 20-APR-2004 2115000 -2.80 20-APR-2004 211500 -0.57 20-APR-2004 214500 -2.85 20-APR-2004 211500 -0.87 20-APR-2004 214500 -2.85 20-APR-2004 211500 -0.80 21-APR-2004 011500 -2.85 20-APR-2004 211500 -0.80 21-APR-2004 011500 -2.87 21-APR-2004 011500 -0.80 21-APR-2004 011500 -2.87 21-APR-2004 011500 -0.80 21-APR-2004 011500 -2.47 21-APR-2004 011500 -0.80 21-APR-2004 013600 -0.80	19:45:00	-0.73	20-APR-2004 19:45:00	-2.60	20-APR-2004 19:45:00	-2.93
0.73 20-APR-2004 2015:00 -2.60 20-APR-2004 2016:00 0.73 20-APR-2004 203:00 -2.67 20-APR-2004 203:00 1.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00 <	20:00:00	-0.80	20-APR-2004 20:00:00	-2.67	20-APR-2004 20:00:00	-2.90
-0.73 20-APR-2004 20:3000 -2.60 20-APR-2004 20:3000 -0.87 20-APR-2004 20:3000 -2.67 20-APR-2004 20:3000 -0.87 20-APR-2004 21:3000 -2.67 20-APR-2004 21:3000 -0.80 20-APR-2004 21:3000 -2.67 20-APR-2004 21:3000 -1.00 20-APR-2004 21:3000 -2.67 20-APR-2004 21:3000 -1.13 20-APR-2004 21:3000 -2.67 20-APR-2004 21:3000 -1.00 20-APR-2004 21:3000 -2.60 20-APR-2004 21:3000 -0.57 20-APR-2004 22:3000 -2.63 20-APR-2004 22:300 -0.67 20-APR-2004 22:3000 -2.63 20-APR-2004 22:300 -0.73 20-APR-2004 22:3000 -2.63 20-APR-2004 22:300 -0.73 20-APR-2004 22:3000 -2.67 20-APR-2004 22:300 -0.73 20-APR-2004 22:3000 -2.63 20-APR-2004 22:300 -0.73 20-APR-2004 23:3000 -2.63 20-APR-2004 23:4500 -0.73 21-APR-2004 01:0000 -2.60 20-APR-2004 23:4500 -0.73 21-APR-2004 01:0000 -2.63 <t< td=""><td>00.45.00</td><td>-0.73</td><td>20-APR-2004 20:15:00</td><td>-2 60</td><td>20-APR-2004 20:15:00</td><td>-2 87</td></t<>	00.45.00	-0.73	20-APR-2004 20:15:00	-2 60	20-APR-2004 20:15:00	-2 87
- 1.07	00.00.00	0.70	20.002.007.002.00	Ogic	20 ABB 2004 20:30:00	0000
-1.00 20-APR-2004 21:15:00 -2.66 20-APR-2004 21:16:00 -0.58 20-APR-2004 21:16:00 -2.66 20-APR-2004 21:16:00 -0.58 20-APR-2004 21:16:00 -0.57 20-APR-2004 21:16:00 -0.58 20-APR-2004 21:16:00 -0.59 20-APR-2004 21:16:00 -0.58 20-APR-2004 21:16:00 -0.59 20-APR-2004 21:16:00 -0.58 20-APR-2004 21:16:00 -0.59 20-APR-2004 21:16:00 -0.50 20-APR-2004 01:16:00 -0.24 21-APR-2004 01:16:00 -0.50 21-APR-2004 01:16:00 -0.24 21-APR-2004 01:16:00 -0.50 21-APR-2004 01:	20.30.00	د/.٥- رق	20-AFR-2004 20.30.00	-2.00	ZU-AFR-ZU04 ZU.3U.U0	72.00
- 0.87 20-APR-2004 21100 00 -2.60 20-APR-2004 21100 00 -1.00 20-APR-2004 21150 00 -1.05 20-APR-2004 21150 00 -1.05 20-APR-2004 2120 00 00 20-APR-2004 2130 00 -1.05 20-APR-2004 2120 00 00 20-APR-2004 2130 00 -0.07 20-APR-2004 2120 00 00 20-APR-2004 2130 00 -0.07 20-APR-2004 2120 00 20 20-APR-2004 2130 00 -0.07 20-APR-2004 2130 00 -2.53 20-APR-2004 2130 00 -2.54 21-APR-2004 0110 00 -2.54 21-APR-2004 0110 00 -2.54 21-APR-2004 011450 00 -2.47 21-APR-2004 011450 00 -2.50 21-APR-2004 011450 00 -2.5	0:42:00	-1.00	20-APR-2004 20:45:00	-5.6/	20-APR-2004 20:45:00	-2.74
- 0.80 20-APR-2004 21:15:00 -2.67 20-APR-2004 21:15:00 -1.10 20-APR-2004 21:15:00 -2.67 20-APR-2004 21:16:00 -1.13 20-APR-2004 21:16:00 -2.67 20-APR-2004 21:16:00 -2.67 20-APR-2004 21:16:00 -2.69 20-APR-2004 21:16:00 -2.63 20-APR-2004 21:16:00 -0.73 20-APR-2004 21:16:00 -2.63 20-APR-2004 22:16:00 -0.87 20-APR-2004 22:30:00 -2.63 20-APR-2004 22:16:00 -2.63 20-APR-2004 23:16:00 -2.63 20-APR-2004 23:16:00 -2.63 20-APR-2004 23:16:00 -2.63 20-APR-2004 23:16:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:20:00 -2.47 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:20:00 -2.47 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:20:00 -0.63 21-APR-2004 01:20:00 -2.47 21-APR-2004 01:20:00 -0.63 21-APR-2004 01:20:00 -2.47 21-APR-2004 01:20:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:20:00 -0.63 21-APR-2004 01:20:00 -2.53 21-APR-2004 01:20:00 -2.24 21-APR-2004 0	21:00:00	-0.87	20-APR-2004 21:00:00	-2.60	20-APR-2004 21:00:00	-2.77
-100 20-APR-2004 21:30:00 -2.60 20-APR-2004 21:30:00 -0.57 20-APR-2004 21:45:00 -2.60 20-APR-2004 22:00:00 -0.57 20-APR-2004 22:00:00 -2.63 20-APR-2004 22:00:00 -0.67 20-APR-2004 22:00:00 -2.63 20-APR-2004 22:30:00 -0.67 20-APR-2004 22:30:00 -2.63 20-APR-2004 22:30:00 -0.67 20-APR-2004 22:30:00 -2.63 20-APR-2004 22:30:00 -0.67 20-APR-2004 22:30:00 -2.63 20-APR-2004 23:45:00 -2.63 20-APR-2004 23:45:00 -2.63 20-APR-2004 23:45:00 -2.63 20-APR-2004 23:45:00 -0.63 20-APR-2004 23:45:00 -2.63 20-APR-2004 23:45:00 -2.64 24-APR-2004 00:30:00 -2.47 21-APR-2004 00:30:00 -2.47 21-APR-2004 00:30:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -0.67 21-APR-2004 01:30:00 -2.55 21-APR-2004 01:30:00 -0.67 21-APR-2004 01:30:00 -2.55 21-APR-2004 01:30:00 -0.67 21-APR-2004 01:30:00 -2.57 21-APR-2004 01:30:00 -0.67 21-APR-2004 01:30:00 -2.53 21-APR-2004 01:20:00 -2.53 21-APR-2004 01:2	21:15:00	-0.80	20-APR-2004 21:15:00	-2.60	20-APR-2004 21:15:00	-2.77
-1.13 20-APR-2004 21:45:00 - 2.60 20-APR-2004 21:45:00 - 0.57 20-APR-2004 22:45:00 - 2.68 20-APR-2004 22:45:00 - 0.673 20-APR-2004 22:30:00 - 2.63 20-APR-2004 22:45:00 - 0.673 20-APR-2004 22:30:00 - 2.63 20-APR-2004 22:30:00 - 0.687 20-APR-2004 22:30:00 - 2.63 20-APR-2004 22:30:00 - 0.697 20-APR-2004 22:30:00 - 2.63 20-APR-2004 22:30:00 - 0.697 20-APR-2004 23:30:00 - 2.63 20-APR-2004 23:30:00 - 0.693 20-APR-2004 23:30:00 - 2.63 20-APR-2004 23:30:00 - 0.680 21-APR-2004 23:30:00 - 2.63 20-APR-2004 23:30:00 - 2.63 21-APR-2004 00:15:00 - 2.47 21-APR-2004 00:15:00 - 0.600 21-APR-2004 00:15:00 - 2.47 21-APR-2004 00:15:00 - 0.600 21-APR-2004 01:15:00 - 2.47 21-APR-2004 01:15:00 - 0.600 21-APR-2004 01:15:00 - 2.47 21-APR-2004 01:15:00 - 0.600 21-APR-2004 01:30:00 - 2.47 21-APR-2004 01:15:00 - 0.600 21-APR-2004 02:20:00 - 2.47 21-APR-2004 01:15:00 - 0.600 21-APR-2004 02:20:00 - 2.47 21-APR-2004 02:30:00 - 0.600 21-APR-2004 02:30:00 - 2.53 21-APR-2004 02:30:00 - 0.600 21-APR-2004 02:30:00 - 2.53 21-APR-2004 02:30:00 - 0.600 21-APR-2004 02:30:00 - 2.53 21-APR-2004 02:30:00 - 2.50 21-APR-2004 02:30:00 - 2.5	21.30.00	-1 00	20-APR-2004 21:30:00	-2 67	20-APR-2004 21:30:00	-2 74
-0.77 20-4RF-2004 21:45:00 -2.60 20-ARR-2004 22:00:00 -0.73 20-ARR-2004 22:30:00 -2.63 20-ARR-2004 22:00:00 -0.73 20-ARR-2004 22:30:00 -2.63 20-ARR-2004 22:30:00 -0.87 20-ARR-2004 22:30:00 -2.63 20-ARR-2004 22:30:00 -0.87 20-ARR-2004 22:30:00 -2.63 20-ARR-2004 22:30:00 -0.83 20-ARR-2004 22:30:00 -2.63 20-ARR-2004 22:30:00 -0.83 20-ARR-2004 23:30:00 -2.63 20-ARR-2004 23:30:00 -0.83 20-ARR-2004 23:30:00 -2.63 20-ARR-2004 23:30:00 -0.80 21-ARR-2004 00:00:00 -2.63 20-ARR-2004 03:30:00 -0.80 21-ARR-2004 00:00:00 -2.47 21-ARR-2004 00:30:00 -0.80 21-ARR-2004 01:50:00 -2.47 21-ARR-2004 01:30:00 -0.63 21-ARR-2004 01:30:00 -2.47 21-ARR-2004 01:30:00 -0.63 21-ARR-2004 01:30:00 -2.47 21-ARR-2004 01:30:00 -2.47 21-ARR-2004 01:30:00 -0.63 21-ARR-2004 01:30:00 -2.47 21-ARR-2004 01:30:00 -0.63 21-ARR-2004 01:30:00 -2.47 21-ARR-2004 01:30:00 -0.65 21-ARR-2004 02:30:00 -2.47 21-ARR-2004 01:30:00 -0.65 21-ARR-2004 03:30:00 -2.47 21-ARR-2004 03:30:00 -0.65 21-ARR-2004 03:30:00 -2.47 21-ARR-2004 03:30:00 -0.65 21-ARR-2004 03:30:00 -2.47 21-ARR-2004 04:30:00 -0.65 21-ARR-2004 04:30:00 -2.47 21-ARR-2004 04:30:00 -0.65 21-ARR-2004 04:30:00 -2.47 21-ARR-2004 04:30:00 -0.65 21-ARR-2004 04:30:00 -2.55 21-ARR-2004 04:30:00 -2.56 21-ARR-2004 05:30:00 -2.56 21-ARR-2004 05:30:00 -2.57 21-ARR-2004 05:30:00 -2.67 21-ARR-2004 05:30:00 -2.67 21-ARR-2004 05:30:00 -2.67 21-ARR-2004 05:30:00 -2.67 21-ARR-2004 05:30:00 -0.68 21-ARR-2004 05:30:00 -2.57 21-ARR-2004 05:30:00 -0.68 21-ARR-2004 05:30:00 -2.55 21-ARR-2004 05:30:00 -0.68 21-ARR-2004 05:30:00 -2.55 21-ARR-2004 05:30:00 -2.57 21-ARR-2004 05:30:00 -2.57 21-ARR-2004 05:30:00 -2.57 21-ARR-2004 05:30:00 -2.53 21-ARR-2004 07:30:00 -2.53 21-ARR-2004 07:	4.45.00	2 7	20 A DD 2004 24:45:00	000	20 A DB 2004 24:45:00	200
-0.57 20-APR-2004 22:000 -2.69 20-APR-2004 22:000 -0.73 20-APR-2004 22:000 -2.63 20-APR-2004 22:000 -0.87 20-APR-2004 22:000 -2.63 20-APR-2004 22:000 -0.87 20-APR-2004 22:3000 -2.63 20-APR-2004 22:3000 -0.87 20-APR-2004 22:3000 -2.63 20-APR-2004 22:3000 -0.89 20-APR-2004 23:46:00 -2.63 20-APR-2004 23:3000 -0.89 20-APR-2004 23:46:00 -2.63 20-APR-2004 23:3000 -0.89 20-APR-2004 23:46:00 -2.63 20-APR-2004 00:30:00 -0.80 21-APR-2004 00:30:00 -2.47 21-APR-2004 00:30:00 -0.80 21-APR-2004 00:30:00 -2.47 21-APR-2004 01:30:00 -0.63 21-APR-2004 01:46:00 -2.47 21-APR-2004 01:46:00 -2.40 21-APR	21.43.00	27.1-	ZU-AFR-ZU04 Z1.43.00	-2.00	ZU-AFR-ZU04 Z1.45.00	-2.0/
- 0.73 20-APR-2004 22:15:00 - 2.53 20-APR-2004 22:15:00 - 0.97 20-APR-2004 22:30:00 - 2.53 20-APR-2004 22:30:00 - 0.97 20-APR-2004 22:30:00 - 2.53 20-APR-2004 23:30:00 - 0.93 20-APR-2004 23:30:00 - 2.53 20-APR-2004 23:30:00 - 0.93 20-APR-2004 23:30:00 - 2.53 20-APR-2004 23:45:00 - 2.64 247 21-APR-2004 00:45:00 - 2.47 21-APR-2004 00:45:00 - 2.47 21-APR-2004 00:45:00 - 2.47 21-APR-2004 01:15:00 - 2.47 21-APR-2004 01:15:00 - 0.65 21-APR-2004 01:15:00 - 2.47 21-APR-2004 01:15:00 - 2.50 21-APR-2004 01:15:	22:00:00	-0.57	20-APR-2004 22:00:00	-2.60	20-APR-2004 22:00:00	-2.80
-0.87 20.APR-2004 22:30:00 -2.53 20.APR-2004 22:30:00 -0.93 20.APR-2004 23:45:00 -2.63 20.APR-2004 23:45:00 -0.93 20.APR-2004 23:45:00 -2.63 20.APR-2004 23:45:00 -0.93 20.APR-2004 23:45:00 -2.63 20.APR-2004 23:45:00 -0.73 20.APR-2004 23:45:00 -2.63 20.APR-2004 23:45:00 -0.70 20.APR-2004 03:45:00 -2.53 20.APR-2004 23:45:00 -0.00 21.APR-2004 06:30:00 -2.47 21.APR-2004 00:30:00 -0.00 21.APR-2004 06:30:00 -2.47 21.APR-2004 01:45:00 -0.50 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:45:00 -0.67 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:45:00 -0.60 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:45:00 -0.60 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:45:00 -0.60 21.APR-2004 02:45:00 -2.47 21.APR-2004 01:45:00 -0.60 21.APR-2004 02:45:00 -2.47 21.APR-2004 02:45:00 -0.60 21.APR-2004 03:45:00	22:15:00	-0.73	20-APR-2004 22:15:00	-2.53	20-APR-2004 22:15:00	-2.80
-107 20-APR-2004 22:45:00 -2.53 20-APR-2004 22:45:00 -0.97 20-APR-2004 23:00:00 -2.60 20-APR-2004 23:00:00 -0.93 20-APR-2004 23:30:00 -2.67 20-APR-2004 23:00:00 -0.73 20-APR-2004 23:30:00 -2.67 20-APR-2004 23:00:00 -0.60 20-APR-2004 23:30:00 -2.53 20-APR-2004 23:30:00 -0.73 20-APR-2004 03:00:00 -2.47 21-APR-2004 00:00:00 -1.07 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.50 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.50 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 02:00:00 -2.47 21-APR-2004 01:00:00 -0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.50 21-APR-2004 02:00:00	22:30:00	-0.87	20-APR-2004 22:30:00	-2.53	20-APR-2004 22:30:00	-2.80
0.93 20-APR-2004 23:05:00 2.60 20-APR-2004 23:05:00 0.093 20-APR-2004 23:05:00 2.67 20-APR-2004 23:000 0.05:00 2.68 20-APR-2004 23:000 0.05:00 2.68 20-APR-2004 23:000 0.05:00 2.04 RP.2004 23:000 0.05:00 2.04 RP.2004 23:000 2.05:00 20-APR-2004 23:000 0.05:00 2.04 RP.2004 23:000 2.05:00 20-APR-2004 23:000 0.05:00 2.04 RP.2004 00:00:00 2.04 2.47 21-APR-2004 00:00:00 0.05:00 21-APR-2004 00:00:00 2.47 21-APR-2004 00:00:00 0.05:00 21-APR-2004 01:00:00 2.47 21-APR-2004 01:00:00 0.05:00 2.47 21-APR-2004 01:00:00 0.05:00 2.47 21-APR-2004 01:00:00 0.05:00 2.47 21-APR-2004 02:00:00 0.05:00 21-APR-2004 02:00:00 0.25:00 21-APR-2004 02:00:00 0.05:00 21-APR-2004 02:00:0	22.45.00	-1 07	20. A DP-2004 22:45:00	2 53	20-APP-2004 22-45-00	2 67
- 0.57	22.43.00	1.07	20-AFIX-2004 22:43:00	2.30	20-Al N-2004 22:43:00	-2.07
0.93 20-APR-2004 23:15:00 2.67 20-APR-2004 23:15:00 0.03 20-APR-2004 23:16:00 2.63 20-APR-2004 23:16:00 0.06 21-APR-2004 00:00:00 2.63 20-APR-2004 23:16:00 0.06 21-APR-2004 00:00:00 2.47 21-APR-2004 00:16:00 1.07 21-APR-2004 00:16:00 2.47 21-APR-2004 00:16:00 0.08 21-APR-2004 01:16:00 2.47 21-APR-2004 00:16:00 0.09 21-APR-2004 01:16:00 2.47 21-APR-2004 01:16:00 0.09 21-APR-2004 01:16:00 2.47 21-APR-2004 01:16:00 0.05 21-APR-2004 01:16:00 2.47 21-APR-2004 01:16:00 0.063 21-APR-2004 01:16:00 2.47 21-APR-2004 01:16:00 0.063 21-APR-2004 02:16:00 2.47 21-APR-2004 01:16:00 0.060 21-APR-2004 02:16:00 2.47 21-APR-2004 02:16:00 0.07 21-APR-2004 03:16:00 2.47 21-APR-2004 03:16:00 0.05 21-APR-2004 03:16:00 2.47 21-APR-2004 03:16:00 0.05 21-APR-2004 03:16:00 2.57	23:00:00	-0.97	20-AFR-2004 23:00:00	-2.60	ZU-APR-ZU04 Z3:UU:UU	-2./4
0 73 20-APR-2004 23:30:00 -2.53 20-APR-2004 23:30:00 0.60 20-APR-2004 23:45:00 -2.53 20-APR-2004 23:45:00 0.08 21-APR-2004 00:00:00 -2.47 21-APR-2004 00:15:00 -1.07 21-APR-2004 00:15:00 -2.47 21-APR-2004 00:16:00 -1.00 21-APR-2004 00:16:00 -2.47 21-APR-2004 00:16:00 -0.50 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.50 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.63 21-APR-2004 01:16:00 -2.47 21-APR-2004 01:16:00 -0.60 21-APR-2004 02:16:00 -2.47 21-APR-2004 02:16:00 -0.70 21-APR-2004 02:16:00 -2.47 21-APR-2004 02:16:00 -0.71 21-APR-2004 03:16:00 -2.47 21-APR-2004 03:16:00 -0.50 21-APR-2004 03:16:00 -2.47 21-APR-2004 03:16:00 -0.51 21-APR-2004 04:16:00	23:15:00	-0.93	20-APR-2004 23:15:00		20-APR-2004 23:15:00	-2.70
-0.60 20-APR-2004 23:45:00 -2.53 20-APR-2004 23:45:00 -0.80 21-APR-2004 00:00:00 -2.60 21-APR-2004 00:16:00 -1.07 21-APR-2004 00:00:00 -2.47 21-APR-2004 00:16:00 -1.09 21-APR-2004 00:00:00 -2.47 21-APR-2004 01:00:00 -0.90 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.80 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 01:00:00 -0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.70 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00	23:30:00	-0.73	20-APR-2004 23:30:00		20-APR-2004 23:30:00	-2.74
-0.80 21.4PR-2004 00:00:00 2.60 21.4PR-2004 00:00:00 -0.80 21.4PR-2004 00:00:00 2.47 21.4PR-2004 00:00:00 -1.07 21.4PR-2004 00:00:00 2.47 21.4PR-2004 00:00:00 -1.00 21.4PR-2004 01:00:00 2.47 21.4PR-2004 00:00:00 -0.80 21.4PR-2004 01:00:00 2.47 21.4PR-2004 01:00:00 -0.67 21.4PR-2004 01:00:00 2.47 21.4PR-2004 01:00:00 -0.63 21.4PR-2004 02:00:00 2.47 21.4PR-2004 01:00:00 -0.63 21.4PR-2004 02:00:00 2.47 21.4PR-2004 01:00:00 -0.67 21.4PR-2004 02:00:00 2.47 21.4PR-2004 01:00:00 -0.67 21.4PR-2004 02:00:00 2.47 21.4PR-2004 02:00:00 -0.67 21.4PR-2004 02:00:00 2.47 21.4PR-2004 03:00:00 -0.50 21.4PR-2004 03:00:00 2.47 21.4PR-2004 03:00:00 -0.53 21.4PR-2004 03:00:00 2.53 21.4PR-2004 03:00:00 -0.53 21.4PR-2004 03:00:00 2.53 21.4PR-2004 03:00:00 -0.53 21.4PR-2004 03:00:00 2.	23.45.00	-0 60	20-APR-2004 23:45:00		20-APB-2004 23:45:00	-2.67
-1.07 21-APR-2004 00:15:00 2.47 21-APR-2004 01:15:00 2.47 21-APR-2004 02:15:00 2.47 21-APR-2004 03:10:00 2.53 21-APR-2004 03:10:00 2.53 21-APR-2004 04:10:00 2.53 21-APR-2004 04:10:00 2.53 21-APR-2004 04:10:00 2.53 21-APR-2004 05:10:00 2.53 21-APR-2004 06:10:00 2.53 21-APR-2004 07:10:00 2.44 21-APR-2004	00.00.0	08.0	24 ABB 2004 00:00:00		24 A DE 2004 00:00:00	25.7
-1.07	00:00:00	-0.00	21-AFR-2004 00:00:00		Z1-AFR-2004 00:00:00	-2.07
-1.00 21-APR-2004 00:30:00 -2.47 21-APR-2004 00:30:00 -0.90 21-APR-2004 00:45:00 -2.47 21-APR-2004 00:45:00 -0.90 21-APR-2004 00:45:00 -2.47 21-APR-2004 01:00:00 -0.65 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 01:15:00 -2.47 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -0.63 21-APR-2004 02:16:00 -2.47 21-APR-2004 01:30:00 -0.67 21-APR-2004 02:16:00 -2.47 21-APR-2004 02:16:00 -0.67 21-APR-2004 02:16:00 -2.47 21-APR-2004 02:30:00 -0.67 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -0.53 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -0.67 21-APR-2004 03:30:00 -2.47 21-APR-2004 02:30:00 -0.67 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.67 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.67 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:30:00 -0.67 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:30:00 -0.67 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:00:00 -0.67 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -0.63 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -0.63 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -0.63 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00	00:51:00	-1.0/	21-APR-2004 00:15:00	-2.4/	Z1-APR-Z004 00:15:00	-2.74
-0.90 21-APR-2004 00:45:00 2.47 21-APR-2004 00:45:00 -0.80 21-APR-2004 01:00:00 -2.53 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:00:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:30:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -2.47 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:30:00 -2.47 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:30:00 -2.47 21-APR-2004 04:30:00 -0.53 21-APR-2004 04:30:00 -2.53 21-APR-2004 04:30:00 -0.57 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -2.57 21-APR-2004 06:30:00 -2.57 21-APR-2004 06:30:00 -0.87 21-APR-2004 06:30:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.37 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.38 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.38 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.39 21-APR-2004 07:16:00 -0.30 21-APR-2004 07:	00:30:00	-1.00	21-APR-2004 00:30:00	-2.47	[21-APR-2004 00:30:00	-2.74
-0.80 21-APR-2004 01:00:00 -2.53 21-APR-2004 01:00:00 -0.67 21-APR-2004 01:00:00 -2.47 21-APR-2004 01:15:00 -0.53 21-APR-2004 01:15:00 -2.47 21-APR-2004 01:15:00 -0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 01:15:00 -0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.67 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -1.03 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.70 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.50 21-APR-2004 03:16:00 -2.47 21-APR-2004 02:00:00 -0.50 21-APR-2004 03:16:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:16:00 -2.50 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:30:00 -2.50 21-APR-2004 03:00:00 -0.67 21-APR-2004 04:30:00 -2.50 21-APR-2004 04:10:00 -0.67 21-APR-2004 05:30:00 -2.53 21-APR-2004 05:30:00 -0.87 21-APR-2004 06:00:00	00:45:00	06.0-	21-APR-2004 00:45:00	-2.47	21-APR-2004 00:45:00	-2.67
-0.67 21.APR-2004 01:15:00 -2.47 21.APR-2004 01:15:00 -0.63 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:30:00 -0.63 21.APR-2004 01:45:00 -2.47 21.APR-2004 01:30:00 -0.60 21.APR-2004 02:00:00 -2.47 21.APR-2004 02:00:00 -0.67 21.APR-2004 02:45:00 -2.47 21.APR-2004 02:00:00 -1.03 21.APR-2004 02:45:00 -2.47 21.APR-2004 02:00:00 -1.03 21.APR-2004 02:45:00 -2.47 21.APR-2004 02:30:00 -0.70 21.APR-2004 02:45:00 -2.47 21.APR-2004 02:45:00 -0.53 21.APR-2004 03:30:00 -2.47 21.APR-2004 03:00:00 -0.50 21.APR-2004 03:45:00 -2.55 21.APR-2004 04:30:00 -0.57 21.APR-2004 03:45:00 -2.50 21.APR-2004 04:30:00 -0.57 21.APR-2004 03:45:00 -2.53 21.APR-2004 04:30:00 -0.57 21.APR-2004 05:45:00 -2.53 21.APR-2004 05:00:00 -0.50 21.APR-2004 05:45:00 -2.53 21.APR-2004 06:30:00 -0.50 21.APR-2004 06:00:00	01.00.00	-0.80	21-APR-2004 01:00:00	-2 53	21-APR-2004 01:00:00	-2 60
-0.53 21-APR-2004 01:13:00 -2.47 21-APR-2004 01:30:00 -0.63 21-APR-2004 01:30:00 -2.47 21-APR-2004 01:30:00 -0.60 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -0.67 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -1.03 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -1.00 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -0.50 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -0.53 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.50 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:30:00 -0.57 21-APR-2004 04:30:00 -2.53 21-APR-2004 04:30:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 06:15:00 -0.60 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:30:00	11.15.00	-0.67	21_ADR_2004 01:15:00	2 47	21 APP 2004 01:15:00	2 67
-0.53 21-APR-2004 01.30.00 -2.47 21-APR-2004 01.30.00 -0.60 21-APR-2004 02.00.00 -2.47 21-APR-2004 01.45.00 -0.60 21-APR-2004 02.00.00 -2.47 21-APR-2004 02.00.00 -0.67 21-APR-2004 02.00.00 -2.47 21-APR-2004 02.00.00 -0.67 21-APR-2004 02.00.00 -2.47 21-APR-2004 02.00.00 -0.70 21-APR-2004 02.00.00 -2.47 21-APR-2004 02.00.00 -0.53 21-APR-2004 03.00.00 -2.47 21-APR-2004 02.00.00 -0.53 21-APR-2004 03.45.00 -2.53 21-APR-2004 03.00.00 -0.50 21-APR-2004 03.45.00 -2.53 21-APR-2004 04.00.00 -0.67 21-APR-2004 04.30.00 -2.53 21-APR-2004 04.15.00 -0.67 21-APR-2004 04.30.00 -2.53 21-APR-2004 04.15.00 -0.60 21-APR-2004 04.30.00 -2.53 21-APR-2004 05.00 -0.73 21-APR-2004 05.00 -2.53 21-APR-2004 05.00 -0.87 21-APR-2004 06.00 -2.53 21-APR-2004 06.00 -0.73 21-APR-2004 06.00 -2.53	130.00	0.52	24 ADD 2004 04:20:00	2.47	24 ABB 2004 04:30:00	77.0
-0.65 21-APR-2004 01:49:00 -2.47 21-APR-2004 02:00:00 -0.65 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.65 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.65 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:15:00 -0.70 21-APR-2004 02:40:00 -2.47 21-APR-2004 02:45:00 -0.70 21-APR-2004 03:00:00 -2.47 21-APR-2004 02:45:00 -0.53 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:45:00 -0.53 21-APR-2004 03:45:00 -2.47 21-APR-2004 03:45:00 -0.53 21-APR-2004 03:45:00 -2.47 21-APR-2004 03:45:00 -0.57 21-APR-2004 03:45:00 -2.53 21-APR-2004 04:30:00 -0.57 21-APR-2004 04:45:00 -2.53 21-APR-2004 04:30:00 -0.57 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:45:00 -2.57 21-APR-2004 05:00:00 -2.57 21-APR-2004 05	00.00	200	21-AFR-2004 01.30.00	2.47	21-AFR-2004 01.30.00	-2.74
-0.60 21-APR-2004 02:00:00 -2.47 21-APR-2004 02:00:00 -0.67 21-APR-2004 02:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.50 21-APR-2004 03:00:00 -2.53 21-APR-2004 03:00:00 -0.57 21-APR-2004 03:00:00 -2.50 21-APR-2004 03:00:00 -0.57 21-APR-2004 04:00:00 -2.50 21-APR-2004 04:00:00 -0.57 21-APR-2004 04:00:00 -2.50 21-APR-2004 04:00:00 -0.57 21-APR-2004 04:00:00 -2.57 21-APR-2004 04:00:00 -0.67 21-APR-2004 05:00:00 -2.57 21-APR-2004 05:00:00 -0.60 21-APR-2004 05:00:00 -2.57 21-APR-2004 06:00:00 -2.57 21-APR-2004 06:00:00 -2.57 21-APR-2004 06:00:00 -2.50 21-APR-2004 06:	71:45:00	-0.63	Z1-AFK-2004 01:45:00	-2.47	21-APR-2004 01:45:00	-7.8/
-0.67 21-APR-2004 02:15:00 -2.47 21-APR-2004 02:30:00 -1.03 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -1.00 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.70 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:30:00 -0.53 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.50 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:30:00 -0.57 21-APR-2004 04:15:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:15:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:15:00 -2.57 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:15:00 -2.57 21-APR-2004 05:00:00 -0.60 21-APR-2004 05:00:00 -2.57 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:00:00 -2.47 21-APR-2004 05:00:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.80 21-APR-2004 06:45:00	05:00:00	-0.60	21-APR-2004 02:00:00	-2.47	21-APR-2004 02:00:00	-2.74
-1.03 21-APR-2004 02:30:00 -2.47 21-APR-2004 02:30:00 -1.00 21-APR-2004 02:45:00 -2.40 21-APR-2004 02:45:00 -0.70 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.53 21-APR-2004 03:15:00 -2.47 21-APR-2004 03:10:00 -0.50 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:10:00 -0.57 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:15:00 -0.67 21-APR-2004 04:15:00 -2.50 21-APR-2004 03:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 05:00:00 -0.67 21-APR-2004 05:00:00 -2.57 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:10:00 -0.77 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:10:00 -0.73 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:10:00 -0.90 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:10:00 -0.77 21-APR-2004 06:30:00	12:15:00	-0.67	21-APR-2004 02:15:00	-2.47	21-APR-2004 02:15:00	-2.74
-1.00 21-APR-2004 02:45:00 -2.47 21-APR-2004 02:45:00 -0.53 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.53 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.53 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:15:00 -0.73 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:30:00 -0.67 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:15:00 -2.57 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:30:00 -2.53 21-APR-2004 04:15:00 -0.67 21-APR-2004 05:00:00 -2.53 21-APR-2004 06:15:00 -0.60 21-APR-2004 05:10:00 -2.53 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:15:00 -2.47 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.87 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.07 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.07 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:10:00 -0.00 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:10:00 -0.00 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:10:00 -0.00 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:10:00 -0.00 21-APR-2004 07:10:00 -2.53 21-APR-2004 07:	02:30:00		21-APR-2004 02:30:00	-2.47	21-APR-2004 02:30:00	-2.74
-0.70 21-APR-2004 03:00:00 -2.47 21-APR-2004 03:00:00 -0.53 21-APR-2004 03:15:00 -2.53 21-APR-2004 03:15:00 -0.50 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.73 21-APR-2004 03:30:00 -2.50 21-APR-2004 03:30:00 -0.67 21-APR-2004 04:15:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:15:00 -2.57 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:15:00 -0.60 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:15:00 -0.60 21-APR-2004 05:00:00 -2.57 21-APR-2004 05:00:00 -0.73 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.77 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.73 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.87 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -0.80 21-APR-2004 06:00:00	12:45:00		21-APR-2004 02:45:00	-2.40	21-APR-2004 02:45:00	-2.67
-0.53 21-APR-2004 03:15:00 -2.53 21-APR-2004 03:15:00 -0.50 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.73 21-APR-2004 03:45:00 -2.50 21-APR-2004 03:45:00 -0.87 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:15:00 -2.57 21-APR-2004 04:15:00 -0.60 21-APR-2004 04:00:00 -2.57 21-APR-2004 04:15:00 -0.60 21-APR-2004 04:15:00 -2.57 21-APR-2004 04:15:00 -0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:15:00 -2.47 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.77 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -0.73 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:00:00	3:00:00		21-APR-2004 03:00:00	-2.47	21-APR-2004 03:00:00	-2.74
-0.50 21-APR-2004 03:30:00 -2.47 21-APR-2004 03:30:00 -0.73 21-APR-2004 03:30:00 -2.53 21-APR-2004 03:45:00 -0.87 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.57 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.57 21-APR-2004 04:30:00 -2.50 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:00:00 -0.60 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:30:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.90 21-APR-2004 06:30:00 -2.53 21-APR-2004 07:30:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00	33.15.00		21-APR-2004 03 15:00	-2.53	21-APR-2004 03:15:00	-2 74
-0.73 21-APR-2004 03:45:00 -2.50 21-APR-2004 03:45:00 -0.73 21-APR-2004 03:45:00 -2.53 21-APR-2004 03:45:00 -0.87 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.67 21-APR-2004 04:30:00 -2.53 21-APR-2004 04:30:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -0.67 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -0.60 21-APR-2004 05:00 -2.57 21-APR-2004 05:00 -0.60 21-APR-2004 05:00 -2.53 21-APR-2004 05:00 -0.87 21-APR-2004 05:00 -2.47 21-APR-2004 05:00 -0.77 21-APR-2004 05:00 -2.53 21-APR-2004 05:00 -0.77 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.90 21-APR-2004 06:30:00 -2.53 21-APR-2004 07:30:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53	30.00	•	21-APR-2004 03:30:00	-2 47	21-APR-2004 03:30:00	2 74
-0.87 21-APR-2004 03-0300 -2.53 21-APR-2004 04:00:00 -2.63 21-APR-2004 04:00:00 -2.63 21-APR-2004 04:00:00 -2.65 21-APR-2004 04:00:00 -2.67 21-APR-2004 04:00:00 -2.57 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:45:00 -0.63 21-APR-2004 04:45:00 -2.53 21-APR-2004 04:45:00 -0.83 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -2.47 21-APR-2004 05:00:00 -2.47 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:00:00 -2.47 21-APR-2004 05:00:00 -0.77 21-APR-2004 05:00:00 -2.47 21-APR-2004 05:00:00 -0.73 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -2.53 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:0	3.45.00	0.20	24 ABB 2004 03:45:00	2.50	24 ADD 2004 03:45:00	787
-0.87 21-APR-2004 04:00:00 -2.53 21-APR-2004 04:00:00 -0.57 21-APR-2004 04:15:00 -2.47 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:30:00 -2.50 21-APR-2004 04:30:00 -0.73 21-APR-2004 04:45:00 -2.53 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 06:00:00 -2.47 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:30:00 -0.83 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.77 21-APR-2004 06:30:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.80 21-APR-2004 07:45:00	4.00.00	-0.5	21-AFIX-2004 03:43:00	25.00	24 455 2004 03:43:00	-2.07
-0.57 21-APR-2004 04:15:00 -2.47 21-APR-2004 04:15:00 -0.67 21-APR-2004 04:30:00 -2.50 21-APR-2004 04:30:00 -0.73 21-APR-2004 04:30:00 -2.57 21-APR-2004 04:30:00 -0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:15:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:15:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:15:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:15:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.80 21-APR-2004 07:45:00	4.00.00	-0.0/	21-AFR-2004 04:00:00	-2.53	Z1-AFR-Z004 04:00:00	-2.6/
-0.67 21-APR-2004 04:30:00 -2.50 21-APR-2004 04:30:00 -0.73 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:45:00 -0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.50 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.83 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 07:45:00	15:00	-0.5/	21-AFR-2004 04:15:00	-2.47	Z1-APR-Z004 04:15:00	-2.50
-0.73 21-APR-2004 04:45:00 -2.57 21-APR-2004 04:45:00 -0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:30:00 -2.53 21-APR-2004 05:30:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:00:00 -2.50 21-APR-2004 06:00:00 -0.83 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 08:00:00 -2.53 21-APR-2004 08:00:00 -0.80 21-APR-2004 08:00:00	30:00	-0.67	21-APR-2004 04:30:00	-2.50	21-APR-2004 04:30:00	-2.60
-0.60 21-APR-2004 05:00:00 -2.53 21-APR-2004 05:00:00 -0.83 21-APR-2004 05:15:00 -2.53 21-APR-2004 05:15:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.50 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:15:00 -0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 07:45:00 -2.53 21-APR-2004 08:00:00	04:45:00	-0.73	21-APR-2004 04:45:00	-2.57	21-APR-2004 04:45:00	-2.60
-0.83 21-APR-2004 05:15:00 -2.53 21-APR-2004 05:15:00 -0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:30:00 -2.50 21-APR-2004 05:30:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.83 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:00:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:40:00	92:00:00	-0.60	21-APR-2004 05:00:00	-2.53	21-APR-2004 05:00:00	-2.60
-0.87 21-APR-2004 05:30:00 -2.47 21-APR-2004 05:30:00 -0.77 21-APR-2004 05:45:00 -2.50 21-APR-2004 05:45:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:15:00 -0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:30:00 -2.53 21-APR-2004 06:30:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00	5:15:00	-0.83	21-APR-2004 05:15:00	-2.53	21-APR-2004 05:15:00	-2.67
-0.77 21-APR-2004 05:45:00 -2.50 21-APR-2004 05:45:00 -0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:00:00 -2.53 21-APR-2004 06:15:00 -0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:15:00 -0.77 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.80 21-APR-2004 08:00:00 -2.50 21-APR-2004 08:00:00	5:30:00	-0.87	21-APR-2004 05:30:00	-2.47	21-APR-2004 05:30:00	-2.67
-0.73 21-APR-2004 06:00:00 -2.47 21-APR-2004 06:00:00 -0.87 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:45:00 -2.47 21-APR-2004 06:45:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:15:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00)5:45:00	-0.77	21-APR-2004 05:45:00	-2.50	21-APR-2004 05:45:00	-2.67
-0.87 21-APR-2004 06:15:00 -2.53 21-APR-2004 06:15:00 -0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:45:00 -2.47 21-APR-2004 06:45:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:45:00	00:00:90	-0.73	21-APR-2004 06:00:00	-2.47	21-APR-2004 06:00:00	-2.67
-0.83 21-APR-2004 06:30:00 -2.50 21-APR-2004 06:30:00 -0.73 21-APR-2004 06:45:00 -2.47 21-APR-2004 06:45:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.80 21-APR-2004 07:45:00 -2.60 21-APR-2004 07:45:00 -0.80 21-APR-2004 07:45:00 -2.60 21-APR-2004 07:	6:15:00	-0.87	21-APR-2004 06:15:00	-2.53	21-APR-2004 06:15:00	-2.67
-0.73 21-APR-2004 06:45:00 -2.47 21-APR-2004 06:45:00 -0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.80 21-APR-2004 07:45:00 -2.50 21-APR-2004 07:	00:08:90	-0.83	21-APR-2004 06:30:00	-2.50	21-APR-2004 06:30:00	-2.70
-0.90 21-APR-2004 07:00:00 -2.53 21-APR-2004 07:00:00 -0.77 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 07:45:00 -2.60 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:	00:42:00	-0.73	21-APR-2004 06:45:00	-2.47	21-APR-2004 06:45:00	-2.74
-0.77 21-APR-2004 07:15:00 -2.53 21-APR-2004 07:15:00 -1.00 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 07:45:00 -2.60 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00	00:00:2	-0.90	21-APR-2004 07:00:00	-2.53	21-APR-2004 07:00:00	-2.74
-0.90 21-APR-2004 07:30:00 -2.53 21-APR-2004 07:30:00 -0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00	7:15:00	-0.77	21-APR-2004 07:15:00	-2.53	21-APR-2004 07:15:00	-2.70
-0.90 21-APR-2004 07:45:00 -2.53 21-APR-2004 07:45:00 -0.80 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00	02:30:00	-1.00	21-APR-2004 07:30:00	-2.53	21-APR-2004 07:30:00	-2.67
-0.80 21-APR-2004 08:00:00 -2.60 21-APR-2004 08:00:00	07:45:00	-0.90	21-APR-2004 07:45:00	-2.53	21-APR-2004 07:45:00	-2.70
0.000.000 0.0	00.00.80	-0.80	21-APR-2004 08:00:00	09 6-	21-APR-2004 08:00:00	22.67
	10.UU.VV	-0.00	24 APP 2004 08:00:00	2.00	21 APR-2004 00:00:00	79.7

	CRCW - Lake)		CRCW - RIVER)		EWII CONCEDV
Time	Elevation	Time	Elevation	Time	Elevation
21-APR-2004 08:30:00	-0.83	21-APR-2004 08:30:00	-2.57	21-APR-2004 08:30:00	-2.67
21-APR-2004 08:45:00	-100	21-APR-2004 08:45:00	-2.53	21-APR-2004 08:45:00	-2.74
-APR-2004 09:00:00	7.7	21-APR-2004 09:00:00	-2 53	21-APR-2004 09:00:00	-2.70
21-APR-2004 09:15:00	06.0-	21-APR-2004 09:15:00	-2.57	21-APR-2004 09:15:00	-2.80
21-APR-2004 09:30:00	0.80	21-APR-2004 09:30:00	-2 53	21-APR-2004 09:30:00	-2.74
21-APR-2004 09:45:00	-0.80	21-APR-2004 09:45:00	-2.50	21-APR-2004 09:45:00	-2.74
21-APR-2004 10:00:00	-0.67	21-APR-2004 10:00:00	-2.53	21-APR-2004 10:00:00	-2.80
21-APR-2004 10:15:00	06.0-	21-APR-2004 10:15:00	-2.53	21-APR-2004 10:15:00	-2.74
21-APR-2004 10:30:00	26 0-	21-APR-2004 10:30:00	-2 53	21-APR-2004 10:30:00	-2 67
21-APR-2004 10:45:00	5.0	21-APR-2004 10:45:00	-2 53	21-APR-2004 10:45:00	-2 60
21-APR-2004 11:00:00	78.0-	21-APR-2004 11:00:00	-2 53	21-APR-2004 11:00:00	29 6-
24 A DB 2004 14:45:00	0.0	21 ABB 2004 11:36:30	25.50	24 ADD 2004 11:30:30	2.57
APR-2004 11.19.00	70.0-	21 APP 2004 11:20:00	25.30	24 ADD 2004 11:19:00	75.07
-AFR-2004 11:30:00	-0.00	Z1-AFR-2004 1.30.00	-2.50	21-APR-2004 11:30:00	25.30
21-APR-2004 11:45:00	-0.63	21-APR-2004 11:45:00	-2.53	21-APR-2004 11:45:00	-2.6/
21-APR-2004 12:00:00	-0.67	21-APR-2004 12:00:00	-2.47	21-APR-2004 12:00:00	-2.63
-APR-2004 12:15:00	-0.67	21-APR-2004 12:15:00	-2.43	21-APR-2004 12:15:00	-2.67
21-APR-2004 12:30:00	-0.80	21-APR-2004 12:30:00	-2.33	21-APR-2004 12:30:00	-2.67
1-APR-2004 12:45:00	-0.87	21-APR-2004 12:45:00	-2.33	21-APR-2004 12:45:00	-2.60
-APR-2004 13:00:00	-0.80	21-APR-2004 13:00:00	-2.30	21-APR-2004 13:00:00	-2.74
21-APR-2004 13:15:00	-0.70	21-APR-2004 13:15:00	-2.27	21-APR-2004 13:15:00	-2.67
1-APR-2004 13:30:00	-0.77	21-APR-2004 13:30:00	-2 20	21-APR-2004 13:30:00	-2.67
-APR-2004 13:45:00	080-	21-APR-2004 13:45:00	-230	21-APR-2004 13:45:00	79 6-
21-APR-2004 14:00:00	08.0-	21-APR-2004 14:00:00	-233	21-APR-2004 14:00:00	02.6-
1 ADP 2004 14:15:00	000	21_APP_2004_14:15:00	2 23	21-ABR-2004 14:15:00	2 8.C
ADD 2004 14: 13:00	0.00	21 A BB 2004 14:30:00	2.22	24 ADD 2004 14:13:00	75.07
21-APR-2004 14:30:00	20.02	21 APR-2004 14:30:00	-2.33	24 APB 2004 14:30:00	79.67
APR-2004 14:45:00	7,00	21-AFR-2004 4:45.00	72.21	24 APP 2004 14:45:00	75.07
1-AFR-2004 15:00:00	70.0	ZI-AFR-Z004 13:00:00	17.7-	21-APR-2004 15:00:00	20.5
1-APR-2004 15:15:00	-0.80	Z1-APR-2004 15:15:00	-2.2/	Z1-APR-Z004 15:15:00	-2.60
21-APR-2004 15:30:00	-0.80	21-APR-2004 15:30:00	-2.33	21-APK-2004 15:30:00	-2.63
-APR-2004 15:45:00	-0.87	21-APR-2004 15:45:00	-2.40	21-APR-2004 15:45:00	-2.53
I-APR-2004 16:00:00	-0.77	21-APR-2004 16:00:00	-2.40	21-APR-2004 16:00:00	-2.53
-APK-2004 16:15:00	-0.7	Z1-AFR-Z004 16:15:00	-2.37	Z1-APR-Z004 16:15:00	-2.50
21-APR-2004 16:30:00	-0.6/	21-APR-2004 16:30:00	-2.33	21-APR-2004 16:30:00	-2.47
<u>:ا</u> ڄ	-0.73	~ I	-2.40	21-APR-2004 16:45:00	-2.50
-APR-2004 17:00:00	-0.67	21-APR-2004 17:00:00	-2.40	21-APK-2004 17:00:00	-2.40
21-APR-2004 17:15:00		21-APR-2004 17:15:00	-2.40	21-APR-2004 17:15:00	-2.47
-APR-2004 17:30:00		Z1-APR-2004 17:30:00	-2.33	21-APR-2004 17:30:00	-2.47
21-APR-2004 17:45:00	-0.90	21-APR-2004 17:45:00	-2.33	21-APR-2004 17:45:00	-2.47
-APR-2004 18:00:00		21-APR-2004 18:00:00	-2.37	21-APR-2004 18:00:00	-2.40
21-APR-2004 18:15:00	-0.80	21-APR-2004 18:15:00	-2.33	21-APR-2004 18:15:00	-2.40
-APR-2004 18:30:00	-0.67	21-APR-2004 18:30:00	-2.33	21-APR-2004 18:30:00	-2.43
1-APR-2004 18:45:00	-0.77	21-APR-2004 18:45:00	-2.27	21-APR-2004 18:45:00	-2.40
21-APR-2004 19:00:00	-0.87	21-APR-2004 19:00:00	-2.33	21-APR-2004 19:00:00	-2.47
21-APR-2004 19:15:00	-0.73	21-APR-2004 19:15:00	-2.30	21-APR-2004 19:15:00	-2.40
21-APR-2004 19:30:00	-0.80	21-APR-2004 19:30:00	-2.27	21-APR-2004 19:30:00	-2.40
21-APR-2004 19:45:00	-0.73	21-APR-2004 19:45:00	-2.33	21-APR-2004 19:45:00	-2.50
21-APR-2004 20:00:00	-0.83	21-APR-2004 20:00:00	-2.27	21-APR-2004 20:00:00	-2.33
1-APR-2004 20:15:00	-0.87	21-APR-2004 20:15:00	-2.27	21-APR-2004 20:15:00	-2.33
21-APR-2004 20:30:00	-0.73	21-APR-2004 20:30:00	-2.20	21-APR-2004 20:30:00	-2.33
1-APR-2004 20:45:00	-0.73	21-APR-2004 20:45:00	-2.20	21-APR-2004 20:45:00	-2.27
21-APR-2004 21:00:00	-0.77	21-APK-2004 21:00:00	-2.23	21-APR-2004 21:00:00	77.7
21-APR-2004 21:13:00	07.0-	24 APP 2004 21:300	2.27	21 ABB 2004 21:13:00	55.7-
21-APR-2004 21:30:00	20.0	21-APR-2004 21:30:00	-2 13	21-APR-2004 21:30:00	25.32
21-APR-2004 22:00:00	20.0-	21-APR-2004 22:00:00	-2 13		26.2
21-APR-2004 22:00:00	08.0-	21-APR-2004 22:35:00	-2 13	21-APR-2004 22:15:00	76.6-
-APR-2004 22:30:00	-0.73	21-APR-2004 22:30:00	-2.13	21-APR-2004 22:30:00	-2.20
21-APR-2004 22:45:00	-0.87	21-APR-2004 22:45:00	-2.20	21-APR-2004 22:45:00	-2.23
21-APR-2004 23:00:00	-0.83	21-APR-2004 23:00:00	-2.17	21-APR-2004 23:00:00	70.0-
			i		7.7-

	(CRCW - Lake)		(CRCW - River)		(Willow Springs)
Time	Flevation	Time	Flevation	Time	Elevation
21-APR-2004 23:30:00	-0.77	21-APR-2004 23:30:00	1	21-APR-2004 23:30:00	
21-APR-2004 23:45:00	-0.93	21-APR-2004 23 45:00		21-APR-2004 23:45:00	-2.20
22 A B B 2004 00:00:00	0.00	22 ABB 2004 00:00:00	247	22 ABB 2004 00:000	
22 APP 2004 00:00:00	76.0	22 A PR 2004 00:45:00	27.0	22 4 50 2004 00:45:00	
22-AF R-2004 00: 13:00	Ç. 62	22-AFR-2004 00: 13:00	24.17	22-AFR-2004 00:13:00	72.20
22-APR-2004 00:30:00	-0.73	ZZ-AFR-ZU04 UU:3U:00		ZZ-AFR-Z004 00.30.00	
22-APR-2004 00:45:00	-0.53	22-APR-2004 00:45:00		22-APR-2004 00:45:00	
22-APR-2004 01:00:00	-0.60	22-APR-2004 01:00:00	-2.13	22-APR-2004 01:00:00	-2.1/
22-APR-2004 01:15:00	-0.80	22-APR-2004 01:15:00	-2.13	22-APR-2004 01:15:00	-2.13
22-APR-2004 01:30:00	-0.93	22-APR-2004 01:30:00	-2.03	22-APR-2004 01:30:00	-2.20
22-APR-2004 01:45:00	-0.87	22-APR-2004 01:45:00	-2.07	22-APR-2004 01:45:00	-2.17
22-APR-2004 02:00:00	-0.83	22-APR-2004 02:00:00	-2 13	22-APR-2004 02:00:00	-2 13
2 A DE 2004 02:15:00	080	22 ABP 2004 02:15:00	2 03	22 A DE 2004 02:35:00	2.13
00.00.00 405 10.00 00 00 00 00 00 00 00 00 00 00 00 00	-0.00	22 A PP 2004 02:19:00	20.25	22 4 11-2004 02: 13:00	2.1.7
Z-AFR-Z004 0Z:30:00	-0.7	22-AFR-2004 02.30.00	-2.03	22-APR-2004 02:30:00	-2.20
2-APR-2004 02:45:00	-0.80	22-APR-2004 02:45:00	-2.07	22-APR-2004 02:45:00	-2.07
2-APR-2004 03:00:00	-1.07	22-APR-2004 03:00:00	-2.07	22-APR-2004 03:00:00	-2.07
2-APR-2004 03:15:00	-0.77	22-APR-2004 03:15:00	-2.00	22-APR-2004 03:15:00	-2.30
2-APR-2004 03:30:00	-0.80	22-APR-2004 03:30:00	-2.00	22-APR-2004 03:30:00	-2.13
2-APR-2004 03:45:00	-0.93	22-APR-2004 03:45:00	-2.00	22-APR-2004 03:45:00	-2.17
2-APR-2004 04:00:00	-0.87	22-APR-2004 04:00:00	-2 00	22-APR-2004 04:00:00	-2 10
2-APP-2004 04:15:00	-0.97	22-APR-2004 04:15:00	00.5	22 ADP 2004 04:50:50	2 13
2 ABB 2004 04:30:00	74.0	22 ABB 2004 04:30:00	20.5	22 ABB 2004 04: 10:00	2 13
2-AFR-2004 04:30:00	-0.7	22-AFR-2004 04:30:00	2.07	22-AFR-2004 04:30:00	27.13
Z-AFR-2004 04:45:00	-0.73	22-AFR-2004 04:45:00	-2.07	22-APR-2004 04:45:00	-2.07
Z-AFR-Z004 05:00:00	-0.8U	22-AFR-2004 US:00:00	-2.07	22-APR-2004 05:00:00	-2.00
2-APR-2004 05:15:00	-0.77	22-APR-2004 05:15:00	-2.07	22-APR-2004 05:15:00	-1.97
2-APR-2004 05:30:00	-0.83	22-APR-2004 05:30:00	-2.00	22-APR-2004 05:30:00	-2.30
2-APR-2004 05:45:00	-0.67	22-APR-2004 05:45:00	-1.93	22-APR-2004 05:45:00	-2.13
2-APR-2004 06:00:00	-0.80	22-APR-2004 06:00:00	-2.00	22-APR-2004 06:00:00	-2.07
2-APR-2004 06:15:00	-0.67		-1.93	22-APR-2004 06:15:00	-2.13
2-APR-2004 06:30:00	-0.80	22-APR-2004 06:30:00	-1.87	22-APR-2004 06:30:00	-2.03
2-APR-2004 06:45:00	-0.77	22-APR-2004 06:45:00	-1.93	22-APR-2004 06:45:00	-2.13
2-APR-2004 07:00:00	-0.73	22-APR-2004 07:00:00	-2.07	22-APR-2004 07:00:00	-2.23
2-APR-2004 07:15:00	-0.83	22-APR-2004 07:15:00	-2.03	22-APR-2004 07:15:00	-2.13
2-APR-2004 07:30:00	-1.00	22-APR-2004 07:30:00	-1.93	22-APR-2004 07:30:00	-2.10
2-APR-2004 07:45:00	-1.00	22-APR-2004 07:45:00	-2.03	22-APR-2004 07:45:00	-2.07
2-APR-2004 08:00:00	-0.77	22-APR-2004 08:00:00	-1.97	22-APR-2004 08:00:00	-2.00
2-APR-2004 08:15:00	-0.73	22-APR-2004 08:15:00	-2.00	22-APR-2004 08:15:00	-2.07
2-APR-2004 08:30:00	-0.87	22-APR-2004 08:30:00	-2.10	22-APR-2004 08:30:00	-2.20
2-APR-2004 08:45:00	-0.77	22-APR-2004 08:45:00	-2.17	22-APR-2004 08:45:00	-2.07
2-APR-2004 09:00:00	-1.00	22-APR-2004 09:00:00	-2.07	22-APR-2004 09:00:00	-2.03
2-APR-2004 09:15:00	-0 .80	22-APR-2004 09:15:00	-2.00	22-APR-2004 09:15:00	-2.03
2-APR-2004 09:30:00	-0.87	22-APR-2004 09:30:00	-2.00	22-APR-2004 09:30:00	-2.07
2-APR-2004 09:45:00	-1.10	22-APR-2004 09:45:00	-2.07	22-APR-2004 09:45:00	-2.07
2-APR-2004 10:00:00	-1.00	22-APR-2004 10:00:00	-2.13	22-APR-2004 10:00:00	-2.00
2-APR-2004 10:15:00	-0.97	22-APR-2004 10:15:00	-2.07	22-APR-2004 10:15:00	-2.03
2-APR-2004 10:30:00	-0.80	22-APR-2004 10:30:00	-2.07	22-APR-2004 10:30:00	-2.00
2-APR-2004 10:45:00	-0.87	22-APR-2004 10:45:00	-2.00	22-APR-2004 10:45:00	-2.03
2-APR-2004 11:00:00	-0.97	22-APR-2004 11:00:00	-2.00	22-APR-2004 11:00:00	-2.00
2-APR-2004 11:15:00	-0.87		-2.03	22-APR-2004 11:15:00	-2.03
2-APR-2004 11:30:00	06.0-	22-APR-2004 11:30:00	-1.93	22-APR-2004 11:30:00	-2.03
2-APR-2004 11:45:00	-0.83	22-APR-2004 11:45:00	-1.97	22-APR-2004 11:45:00	-2.00
2-APR-2004 12:00:00	-0.80	22-APR-2004 12:00:00	-2.10	22-APR-2004 12:00:00	-2.00
2-APR-2004 12:15:00	-0.60		-2.13	22-APR-2004 12:15:00	-2.00
2-APR-2004 12:30:00	-0.73	22-APR-2004 12:30:00	-2.00	22-APR-2004 12:30:00	-2.05
2-APR-2004 12:45:00	-0 .80	22-APR-2004 12:45:00	-2.10	22-APR-2004 12:45:00	-2.07
2-APR-2004 13:00:00	-0.80	22-APR-2004 13:00:00	-1.93	22-APR-2004 13:00:00	-2.00
2-APR-2004 13:15:00	-0.73	22-APR-2004 13:15:00	-1.87	22-APR-2004 13:15:00	-1.93
2-APR-2004 13:30:00	-0.80	22-APR-2004 13:30:00	-1.93	22-APR-2004 13:30:00	-2.00
2-APR-2004 13:45:00	-0.80	22-APR-2004 13:45:00	-1.97	22-APR-2004 13:45:00	-2.07
22-APR-2004 14:00:00	-0.73	22-APR-2004 14:00:00	-2.00	22-APR-2004 14:00:00	-2.07
2-APR-2004 14:15:00	-0.60	22-APR-2004 14:15:00	-2.00	22-APR-2004 14:15:00	-2.00

	(CRCW - Lake)		(CRCW - RIVER)		(MILION SPILING)
	ECRCWGG1\$PV		ECRCWGG2\$PV		EWILSPNS\$PV
Time	Elevation	Time	Elevation	Time	Elevation
22-APR-2004 14:30:00	-0.73	22-APR-2004 14:30:00	-1.90	22-APR-2004 14:30:00	-2.00
22-APR-2004 14:45:00	-0.73	22-APR-2004 14:45:00	-1.93	22-APR-2004 14:45:00	-1.93
22-APR-2004 15:00:00	-0.73	22-APR-2004 15:00:00	-2.07	22-APR-2004 15:00:00	-2.00
22-APR-2004 15:15:00	-0.73	22-APR-2004 15:15:00	-2.07	22-APR-2004 15:15:00	-1.93
22-APR-2004 15:30:00	-0.57	22-APR-2004 15:30:00	-2.10	22-APR-2004 15:30:00	-2.10
22-APR-2004 15:45:00	-0.57	22-APR-2004 15:45:00	-1.97	22-APR-2004 15:45:00	-1.93
22-APR-2004 16:00:00	-0.53	22-APR-2004 16:00:00	-1.93	22-APR-2004 16:00:00	-2.00
22-APR-2004 16:15:00	-0.47	22-APR-2004 16:15:00	-1.97	22-APR-2004 16:15:00	-2.00
22-APR-2004 16:30:00	-0.57	22-APR-2004 16:30:00	-2.00	22-APR-2004 16:30:00	-2.00
22-APR-2004 16:45:00	-0.43	22-APR-2004 16:45:00	-2.00	22-APR-2004 16:45:00	-2.07
22-APR-2004 17:00:00	-0.60	22-APR-2004 17:00:00	-2.13	22-APR-2004 17:00:00	-2.00
22-APR-2004 17:15:00	-0.53	22-APR-2004 17:15:00	-2.00	22-APR-2004 17:15:00	-2.00
22-APR-2004 17:30:00	-0.83	22-APR-2004 17:30:00	-1.97	22-APR-2004 17:30:00	-2.07
22-APR-2004 17:45:00	-0.77	22-APR-2004 17:45:00	-2.07	22-APR-2004 17:45:00	-2.13
22-APR-2004 18:00:00	-0.67	22-APR-2004 18:00:00	-1.97	22-APR-2004 18:00:00	-2.00
22-APR-2004 18:15:00	-0.53	22-APR-2004 18:15:00	-1.97	22-APR-2004 18:15:00	-1.93
22-APR-2004 18:30:00	-0.63	22-APR-2004 18:30:00	-1.93	22-APR-2004 18:30:00	-2.07
2-APR-2004 18:45:00	-0.73	22-APR-2004 18:45:00	-1.93	22-APR-2004 18:45:00	-2.00
22-APR-2004 19:00:00	-0.63	22-APR-2004 19:00: 0 0	-1.93	22-APR-2004 19:00:00	-2.00
22-APR-2004 19:15:00	-0.53	22-APR-2004 19:15:00	-1.93	22-APR-2004 19:15:00	-2.00
22-APR-2004 19:30:00	-0.67	22-APR-2004 19:30:00	-1.93	22-APR-2004 19:30:00	-2.20
22-APR-2004 19:45:00	-0.70	22-APR-2004 19:45:00	-1.87	22-APR-2004 19:45:00	-2.07
22-APR-2004 20:00:00	-0.73	22-APR-2004 20:00:00	-1.87	22-APR-2004 20:00:00	-2.00
22-APR-2004 20:15:00	-0.70	22-APR-2004 20:15:00	-1.90	22-APR-2004 20:15:00	-2.00
22-APR-2004 20:30:00	-0.73	22-APR-2004 20:30: 0 0	-1.87	22-APR-2004 20:30:00	-1.93
22-APR-2004 20:45:00	-0.73	22-APR-2004 20:45:00	-1.93	22-APR-2004 20:45:00	-2.03
22-APR-2004 21:00:00	-0.67	22-APR-2004 21:00:00	-1.97	22-APR-2004 21:00:00	-2.00
22-APR-2004 21:15:00	-0.73	22-APR-2004 21:15:00	-1.93	22-APR-2004 21:15:00	-1.93
22-APR-2004 21:30:00	-0.67	22-APR-2004 21:30:00	-1.93	22-APR-2004 21:30:00	-1.87
22-APR-2004 21:45:00	-0.80	22-APR-2004 21:45:00	-1.87	22-APR-2004 21:45:00	-2.00
22-APR-2004 22:00:00	-0.73	22-APR-2004 22:00:00	-1.90	22-APR-2004 22:00:00	-1.93
22-APR-2004 22:15:00	-0.60	22-APR-2004 22:15:00	-1.87	22-APR-2004 22:15:00	-1.93
22-APR-2004 22:30:00	-0.67	22-APR-2004 22:30:00	-1.87	22-APR-2004 22:30:00	-2.00
22-APR-2004 22:45:00	-0.73	22-APR-2004 22:45:00	-1.83	22-APR-2004 22:45:00	-2.20
22-APR-2004 23:00:00	-0.87	22-APR-2004 23:00:00	-1.80	22-APR-2004 23:00:00	-2.10
22-APR-2004 23:15:00	-0.77	22-APR-2004 23:15:00	-1.83	22-APR-2004 23:15:00	-2.07
22-APR-2004 23:30:00	-0.73	22-APR-2004 23:30:00	-1.83	22-APR-2004 23:30:00	-2.00
22-APR-2004 23:45:00	-0.73	22-APR-2004 23:45:00	-1.87	22-APR-2004 23:45:00	-2.00

.

.

.

Appendix B Sample Photographs

Date: April 20, 2004 Sample SF-2004-B02

Date: April 20, 2004 Sample SF-2004-B03

Date: April 21, 2004 Sample SF-2004-B05

Date: April 21, 2004 Sample SF-2004-B07

Date: April 21, 2004 Sample SF-2004-B09

Date: April 22, 2004 Sample SF-2004-B10

South Fork South Branch Chicago River sediment sampling, April 2004

Date: April 20, 2004 Sample SF-2004-G02

Date: April 21, 2004 Sample SF-2004-G04

Date: April 22, 2004 Sample SF-2004-G05

Appendix C Soil Boring Logs and Field Notes

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B01

Project Name: South Branch South Fork, Chicago River Client: USACE

Project Location: Chicago, IL **Project Number:**

Riverbed Elevation (ft.): 571.41 **Drilling Contractor:** Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore Total Depth (ft.): 14.2

Depth to Riverbed (ft. BGS): -5.66 Drillers: Mike Beaston, Leroy Brown & Mark Padover

Abandonment Method: N/A Drilling Date: Start: 4/20/04 End: 4/20/04

Field Screening Instrument: PID **Borehole Coordinates:** Logged By: David de Courcy-Bower N 41.84 E 87.67

Field Instrument Reading (ppm) Stratum Designation Blows per 6 Inches Sample Recovery (Inches) Graphic Log Elev. Depth (ft.) Material Sample Number Description 571.4 OL CLAY-5yr 2.5/1, wet, soft, little fine sand and silt, organics 24/18.93 15.4 24/18.93 20.9 2 566.4 3 24/18.93 40.5 24/18.93 50.4 OL CLAY-5yr 2.5/1, wet, soft, hydrocarbon odor, little fine sand and 5 24/18.93 35.7 silt, organics 561.4 6 24/18.93 250.3 7 26.4/20.82 237 End of boring @ 14.2 feet below riverbed 556.4

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger HSA SSA HA AR DTR Hand Auger Air Rotary
Dual Tube Rotary
Foam Rotary FR MR Mud Rotary Reverse Circulation Cable Tool RC CT Jetting JET D

Driving Drill Through Casing

CORP.GDT 7/22/04

CDM

LOGS BUBBLY CREEK.GPJ

Auger/Grab Sample California Sampler BX NX GP HP 1.5" Rock Core 2.1" Rock Core Geoprobe SS ST WS Split Spoon Shelby Tube Wash Sample OTHER: Above Ground Surface

SAMPLING TYPES:

REMARKS

Sediment sample taken from 10 feet to 12 feet below riverbed. Sample was not analyzed by laboratory; instead, CDM collected samples at location B01A and those samples were analyzed.

Reviewed by: Date:

CORING LOG

Sheet 1 of 1

SF 2004 B01a

Client: USACE

Project Location: Chicago, IL

Drilling Contractor: Aqua Survey

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Method/Rig: Vibracore/Vibracore

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.84 E 87.67

Project Number:

Riverbed Elevation (ft.): 570.47

Project Name: South Branch South Fork, Chicago River

Total Depth (ft.): 12.9

Depth to Riverbed (ft. BS): -6.6

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description	
	1	24/19.53	570.5 0	32.1			OL	CLAY-5yr 2.5/1, saturated, soft, odor, little fine sand and silt, organics	
	2	24/19.53	565.5 5 155 - 186 - 221 560.5			OL	OL	CLAY-5yr 2.5/1, wet, soft, odor, little fine sand and silt, organics	
	3	24/19.53							
	5	24/19.53							
	6	34.8/28.33	10	529					
						End of boring @ 12.9 feet below riverbed			
			550.5						
HSA SSA HA AR DTR FR MR RC CT	ING METHOD: Hollow Ster Solid Stem Hand Auge Hand Auge Air Rotary Dual Tube Foam Rota Mud Rotary Reverse Ci Cable Tool Jetting Driving	n Auger Auger r Rotary ry	TION O	S. A. C. B. N. G. H. S. S. W. O.	AMPLING S - Au S - Ca X - 1.5 X - 2.1 P - Ge P - Hy S - Sp T - Sh	TYPES: ger/Grab lifornia S " Rock C " Rock C oprobe dro Punc lit Spoon elby Tubo ash Samp	REMARKS Sediment sample taken from 10 feet to 12 feet below riverbed.		

EXPLANATION OF ABBREVIATIONS

Driving Drill Through Casing

Above Ground Surface

Reviewed by:

CORING LOG SF 2004 B02

Client: USACE

Project Location: Chicago, IL

Project Name: South Branch South Fork, Chicago River

Project Number:

Drilling Contractor: Aqua Survey

Riverbed Elevation (ft.): 573.13

Drilling Method/Rig: Vibracore/Vibracore

Total Depth (ft.): 16

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Depth to Riverbed (ft. BS): -4.16

Drilling Date: Start: 4/20/04 End: 4/20/04

Abandonment Method: N/A

Borehole Coordinates:

Field Screening Instrument: PID

N 41.84 E 87.67

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			573.1 0				OL	CLAY-5yr 2.5/1, wet, soft, trace sand and silt, organics, hair and
	1	24/24		16.8			OL	bone
	2	24/24		25.1	_			
	3	24/24	568.1 5	69.0				
	4	24/24		66.2	-			
	5	24/24	5 <u>63.1</u>	43.3				
	6	24/24	10	23.7	_			
	7	24/24		14.8	_			
	8	24/24	5 <u>58.1</u> 15	7.1	_		OL	CLAY-5yr 5/1, wet, soft, some silt
								End of boring @ 16 feet below riverbed
100.100			553.1					
<u> </u>	FVI		TION O)=\/\A=	10110		DEMARKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HSA SSA HA AR DTR FR MR CT JET D Hand Auger Air Rotary
Dual Tube Rotary
Foam Rotary Mud Rotary
Reverse Circulation
Cable Tool
Jetting Driving Drill Through Casing

LOGS BUBBLY CREEK.GPJ CDM_CORP.GDT 7/12/04

SAMPLING TYPES: AS - Auger/Grab Sample CS - California Sampler BX - 1.5" Rock Core AS CS BX SP HP 2.1" Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample Above Ground Surface

REMARKS

Sediment sample taken from 4 feet to 6 feet below riverbed.

Reviewed by:

CAMP DRESSER & McKEE

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B03

Client: USACE

Project Location: Chicago, IL.

Drilling Contractor: Agua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/20/04 End: 4/20/04 **Borehole Coordinates:**

N 41.84 E 87.66

Project Name: South Branch South Fork, Chicago River

Project Number:

Riverbed Elevation (ft.): 564.77

Total Depth (ft.): 11.1

Depth to Riverbed (ft. BS): -12.5

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

		1		-		T		
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			564.8					
	1	24/20.76	0	11.3			OL	CLAY-5yr 2.5/1, saturated, soft, trace soil, trace silt, organics, plastic and garbage
	2	24/20.76		60.4			OL	CLAY-5yr 2.5/1, saturated, soft, trace soil, trace silt, organics
	3	36/31.14	559.8 5	126.2			OL	CLAY-5yr 2.5/1, wet, soft, trace soil, trace silt, organics, hair
	4	24/20.76	-	59.0	-			
	5	25.2/21.79	5 <u>54.8</u> 10	109.2				
								End of boring @ 11.1 feet below riverbed
			549.8 15					
			544.8					
	EX	PLANA	TION O	F ABB	REVIAT	TIONS		REMARKS

LOGS BUBBLY CREEK.GPJ CDM_CORP.GDT 7/12/04

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Air Rotary
DTR - Dual Tube Rotary
FR - Foam Rotary
MR - Mud Rotary
RC - Reverse Circulation
CT - Cable Tool
JET - Jetting
D - Driving
DTC - Dill Through Casing Driving Drill Through Casing SAMPLING TYPES: AS - Auger/Grab Sample CS - California Sampler BX - 1.5" Rock Core AS CS BX XP H SS T 2.1" Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube WS -OTHER: Wash Sample

Above Ground Surface

Sediment sample taken from 4 feet to 6 feet below riverbed.

Reviewed by:

Sheet 1 of 1

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B04

Client: USACE

Project Name: South Branch South Fork, Chicago River

Project Number:

Project Location: Chicago, IL **Drilling Contractor:** Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.84 E 87.66

Riverbed Elevation (ft.): 564.84

Total Depth (ft.): 9.5

Depth to Riverbed (ft. BS): -12.2

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			564.8					
	1	24/17.68	0	44.7	1		OL	CLAY-5yr 2.5/1, saturated, soft, odor, trace sand and gravel, organics
	2	24/17.68	- 	239			SM	SAND-5yr 2.5/1, wet, loose, odor, some clay and silt, foil, hair, and organics
	3	24/17.68	5 <u>59.8</u> 5	414			OL	CLAY-5yr 2.5/1, wet, soft, odor, trace sand, foil, hair, and organics
	4	24/17.68	_	229				
	5	18/13.26	г -	302	_			
			554.8 10 - - - - 549.8 15 - - - - - - - - - - - - - - - - - -					End of boring @ 9.5 feet below riverbed

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stern Auger SSA - Solid Stern Auger HA AR DTR FR MR RC CT JET D Air Rotary
Dual Tube Rotary
Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting Driving Drill Through Casing

CDM_CORP.GDT 7/12/04

BL LOGS BUBBLY CREEK.GPJ

Auger/Grab Sample California Sampler AS CS XXP PP 1.5" Rock Core 2.1" Rock Core Geoprobe Hydro Punch SS ST WS Split Spoon Shelby Tube Wash Sample Above Ground Surface

SAMPLING TYPES:

Sediment sample taken from 4 feet to 6 feet below riverbed.

REMARKS

Reviewed by:

CORING LOG SF 2004 B05

Client: USACE

Project Location: Chicago, IL

Project Name: South Branch South Fork, Chicago River

Project Number:

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Total Depth (ft.): 10

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Depth to Riverbed (ft. BGS): -11.4

Riverbed Elevation (ft.): 565.69

Drilling Date: Start: 4/21/04 End: 4/21/04

Abandonment Method: N/A

Borehole Coordinates:

Field Screening Instrument: PID

N 41.84 E 87.66

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
		24/17.52	565.7 0	40.5			OL	CLAY-5yr 2.5/1, wet, soft, odor, little gravel, hair, foil, and organics
	2	36/26.28	560.7	93				
	3	24/17.52	560.7 5	136			OL	CLAY-5yr 2.5/1, wet, soft, odor, some gravel and sand, foil, hair, and organics
	4	36/26.28		101.4			OL	CLAY-5yr 2.5/1, wet, soft, odor, foil, hair, and organics
			10 					End of boring @ 10 feet below riverbed
			_ <u>550.7</u> 					
			5 <u>45.7</u>					
EXPLANATION OF ABBREVIATIONS DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger SSA - Solid Stem Auger HA - Hand Auger HA - Hand Auger HA - Hand Auger HA - Hand Auger HA - Foam Rotary HP - Hydro Punch MR - Mud Rotary RC - Reverse Circulation CT - Cable Tool JET - Jetting HA - BOYNE - HOLLOW -								REMARKS Sediment sample taken from 4 feet to 6 feet below riverbed. Took duplicate sample.
DTC	- Driving AGS - Above Ground							Reviewed by: Date:

EXPLANATION OF ABBREVIATIONS

Driving Drill Through Casing

Reviewed by:

CORING LOG SF 2004 B06

Client: USACE

Project Location: Chicago, IL

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.84 E 87.66

Project Name: South Branch South Fork, Chicago River

Project Number:

Riverbed Elevation (ft.): 569.5

Total Depth (ft.): 8.3

Depth to Riverbed (ft. BS): -7.5

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			569.5 0				CL	2" CLAY-7.5yr 6/1, wet, soft, trace silt
	2	24/19.02 24/19.02	-	0.3	_		GM	GRAVEL-5yr 2.5/1, saturated, loose, odor, some sand, oily sheen
	3	24/19.02	564.5 5	5.8			CL GM	CLAY- 7.5yr 6/1, wet, soft, trace silt
	4	26.4/20.93		29.3	_		Olvi	GRAVEL-5yr 2.5/1, saturated, loose, odor, some sand, oily sheen, trash End of boring @ 8.3 feet below riverbed
		1	5 <u>59.</u> 5 10					
			15					
		PLANA	549.5	EARR	DEVIAT	IONE		REMARKS

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger

HSA SSA HA AR DTR Hand Auger Air Rotary
Dual Tube Rotary Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool FR MR RC CT

LOGS BUBBLY CREEK.GPJ

Jetting Driving Drill Through Casing JET DTC

SAMPLING TYPES:

 Auger/Grab Sample
 California Sampler
 1.5" Rock Core AS CS BX

NX GP HP SS ST 2.1" Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube

Wash Sample OTHER: Above Ground Surface

Date: Reviewed by:

Sediment sample taken from 6 feet to 8 feet below riverbed.

CORING LOG SF 2004 B07

Client: USACE

Project Location: Chicago, IL

Project Name: South Branch South Fork, Chicago River

Project Number:

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.83 E 87.66

Riverbed Elevation (ft.): 573.2

Total Depth (ft.): 13.8

Depth to Riverbed (ft. BS): -3.7 Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description	
			573.2				O.M.	CAND for 0.514 and and area in	
	1	24/13.04	0 	22.3	_		SM	SAND-5yr 2.5/1, wet, soft, wood, and organics	
	2	24/13.04		22.3					
	3	24/13.04	<u>568.2</u> 5		_	عاد	GM	GRAVEL-5yr 2.5/1, wet, loose, odor, some silty clay	
	4	24/13.04	563.2 10		_		OL	CLAY-5yr 2.5/1, wet, soft, trace some sand and silt, hair, and organics	
	5	24/13.04		33.5					
	6	45.6/24.78		43.3			OL	CLAY-5yr 2.5/1, wet, soft, odor, trace sand and silt, organics	
								End of boring @ 13.8 feet below riverbed	
			553.2	-					
HSA SSA HA	LING METHOD: - Hollow Ster - Solid Stem - Hand Auge - Air Rotary - Dual Tube - Foam Rota - Mud Rotary - Reverse Ci - Cable Tool - Jetting - Driving	m Auger Auger r Rotary ry rculation	TION O	SACBNGHSS v	SAMPLING S - Au S - Ca X - 1.5 X - 2.1 SP - Ge IP - Hy SS - Sp TT - Sh	TYPES: ger/Grab lifornia S " Rock C " Rock C oprobe dro Punc lit Spoon elby Tub ash Samp	Sample Sampler Core Core	REMARKS Sediment sample taken from 6 feet to 8 feet below riverbed and MS/MSD.	

EXPLANATION OF ABBREVIATIONS

DTC

Reviewed by:

CAMP DRESSER & McKEE

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B08

Client: USACE

Project Location: Chicago, IL

Project Name: South Branch South Fork, Chicago River

Project Number:

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.83 E 87.66

Riverbed Elevation (ft.): 569.85

Total Depth (ft.): 6.6

Depth to Riverbed (ft. BS): -7.4

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description					
			569.9				011						
	1	24/14.54	0 	16.8	_		SM	SAND-5yr 2.5/1, wet, loose, odor					
	2	24/14.54	564.9	564.9	564.9	564.9	564.9	+ +	53.3			OL	CLAY-5yr 2.5/1, wet, odor, organics, hair, and trash
	3	31.2/18.91				63.2			SM	SAND-5yr 2.5/1, wet, loose, odor, organics End of boring @ 6.6 feet below riverbed			
			559.9										
		-											
	549.9 EXPLANATION OF ABBREVIATIONS												
HSA SSA HA AR DTR FR MR RC CT	ING METHODS - Hollow Ster - Solid Stem - Hand Auger - Air Rotary - Dual Tube I - Foam Rotar - Mud Rotary - Reverse Cit - Cable Tool	S: n Auger Auger r Rotary	TION O	SACBAGESSY	AMPLING S - Au S - Ca X - 1.5 IX - 2.1 SP - Ge IS - Sp IS - Wa		Sample sampler core core	REMARKS Sediment sample taken from 4 feet to 6 feet below riverbed.					
JET D	 Jetting Driving 				THER: GS - At	ove Gro	und	Paviawed by					

EXPLANATION OF ABBREVIATIONS

Driving Drill Through Casing

Above Ground AGS -

REMARKS

Reviewed by:

CORING LOG SF 2004 B09

Client: USACE

Project Location: Chicago, IL

1+

Drilling Contractor: Aqua Survey Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/21/04 End: 4/21/04

Borehole Coordinates:

N 41.83 E 87.66

Project Name: South Branch South Fork, Chicago River

Project Number:

Riverbed Elevation (ft.): 564.83

Total Depth (ft.): 9

Depth to Riverbed (ft. BS): -12

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

Sample	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			564.8					
	1	24/16	0 -	37.7			SM	SAND-5yr 2.5/1, wet, loose, hair, and organics with wood
	2	24/16	-	50.4			OL	CLAY-5yr 2.5/1, wet, soft, hair, organics with roots
	3	24/16	5 <u>59.8</u>	21.9	-			
	4	36/24		53.3	_			
							End of boring @ 9 feet below riverbed	
			549.8 15					
3DT 7/12/04								
CORP.C			544.8					
CDM	EX	(PLANA	TION O	F ABB	REVIAT	IONS		REMARKS
S S S	R - Air Rotary TR - Dual Tube R - Foam Rota IR - Mud Rotar C - Reverse C T - Cable Tool	m Auger Auger er Rotary ary y irculation		A C B N G H S S V	CS - Ca EX - 1.5 EX - 2.1 EP - Ge EP - Hy ES - Sp ET - Sh	TYPES: ger/Grab lifornia S " Rock C " Rock C oprobe dro Punc lit Spoon elby Tub ash Samp	ampler core ch e	Sediment sample taken from 6 feet to 8 feet below riverbed.
의	 Driving 	ah Casina			GS - AL	oove Gro	und	Reviewed by:

EXPLANATION OF ABBREVIATIONS

Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool Jetting Driving Drill Through Casing

Reviewed by:

CORING LOG SF 2004 B10

Client: USACE

Project Location: Chicago, IL

Project Name: South Branch South Fork, Chicago River

Project Number:

Drilling Contractor: Aqua Survey

Riverbed Elevation (ft.): 573.98

Drilling Method/Rig: Vibracore/Vibracore

Total Depth (ft.): 12.5

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Depth to Riverbed (ft. BS): -3.5

Drilling Date: Start: 4/22/04 End: 4/22/04

Abandonment Method: N/A

Borehole Coordinates:

Field Screening Instrument: PID

N 41.83 E 87.66

Logged By: David de Courcy-Bower

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			574.0					
	1	24/17.09	0 -	27.9			SM	SAND-5yr 2.5/1, wet, loose, odor, and organics
	2	24/17.09		83.5				
	3	24/17.09	_ _ _ 564.0	149.1			SM	SAND-5yr 2.5/1, wet, loose, odor, trace clay and silt, organics
	4	24/17.09		92.2	_			1" layer of white substance
	5	24/17.09		224			OL	CLAY-5yr 2.5/1, wet, soft, organic odor, sticks and leaves
	6	30/21.36	10 	231		- 445		End of boring @ 12.5 feet below riverbed
			 559.0 15 					
			554.0	1.0				
HSA SSA HA AR DTR FR MR RC CT	ING METHODS - Hollow Ster - Solid Stem - Hand Auger - Air Rotary - Dual Tube F - Foam Rotar - Mud Rotary - Reverse Cir - Cable Tool - Jetting - Driving	n Auger Auger Rotary Y	IION O	SA CC BN NG H SS SV	AMPLING S - Auç S - Cal X - 1.5 X - 2.1' EP - Ge P - Hyo S - Spl T - She	TYPES: ger/Grab ifomia Si " Rock C " Rock C oprobe dro Puncl it Spoon elby Tube sh Samp	REMARKS Sediment sample taken from 10 feet to 12 feet below riverbed.	

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger SSA HA AR DTR Hand Auger Air Rotary Dual Tube Rotary FR MR RC CT JET D DTC Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool Jetting Driving Drill Through Casing

Surface

Reviewed by:

Sheet 1 of 1

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B11

Client: USACE

Project Location: Chicago, IL

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/22/04 End: 4/22/04

Borehole Coordinates:

N 41.83 E 87.66

Project Name: South Branch South Fork, Chicago River

Project Number:

Riverbed Elevation (ft.): 572.76

Total Depth (ft.): 11

Depth to Riverbed (ft. BGS): -4.5

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

1	Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic	Stratum Designation	Material Description
2 24/15.27 - 53.3 - OL CLAY-5yr 2.5/1, wet, soft, odor, little sand, foil, and organics 3 24/15.27 - 567.8		1	24/15.27	0	240.8	_			
### A 1 Hollow Stem Auger SSA - Solid Stem Auger SSA - Solid Stem Auger HAP - Hollow Stem Auger AR - Air Rotary PT - Dual Tube Rotary RT - Geographs PT - Dual Tube Rotary RT - South RT - Sou		2	24/15.27		53.3				
EXPLANATION OF ABBREVIATIONS DRILLING METHODS: HSA - Hollow Stem Auger HSA -		3	24/15.27	5 <u>67.8</u> 5	53.5				
EXPLANATION OF ABBREVIATIONS EXPLANATION OF ABBREVIATIONS PRILLING METHODS: 1552.8 SAMPLING TYPES: 15A - Hollow Stem Auger 15A - Hollow Stem Auger 15A - Hollow Stem Auger 15A - Auger/Grab Sample 15A - Hollow Stem Auger 15A - Auger/Grab Sample 15B - Solid Stem Auger 15C - California Sampler 15A - Auger/Grab Sample 15B - Solid Stem Auger 15C - California Sampler 15A - Auger/Grab Sample 15B - Solid Stem Auger 15C - California Sample 15C - Severs Core 15C - Severs Circulation 15C - Reverse Circulation 15C - Reverse Circulation 15C - Reverse Circulation 15C - Reverse Circulation 15C - Severse Circulation 15C - Sev		4	24/15.27		76.2	_		OL	CLAY-5yr 2.5/1, wet, soft, odor, little sand, and organics
EXPLANATION OF ABBREVIATIONS DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger AS - Auger/Grab Sample CS - California Sampler HA - Hand Auger AR - Air Rotary DTR - Dual Tube Rotary RR - Form Rotary MR - Mud Rotary MR - Severse Circulation CT - Cable Tool WS - Wash Sample OTHER: EXPLANATION OF ABBREVIATIONS Sediment sample taken from 0 feet to 2 feet below riverbed		5	36/22.91		173.8	_			
EXPLANATION OF ABBREVIATIONS DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Stem Stem HA - Hand Stem HA - H					8.	End of boring @ 11 feet below riverbed			
EXPLANATION OF ABBREVIATIONS DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger HA - Hand Auger HA - Hand Auger HA - Hand Rotary HP - Hydro Punch				 					
HSA - Hollow Stem Auger		EX	PLANA		F ABBF	REVIAT	IONS	II	REMARKS
D - Driving AGS - Above Ground	HSA SSA HA AR DTR FR MR CC	 Hollow Ste Solid Stem Hand Auge Air Rotary Dual Tube Foam Rota Mud Rotary Reverse Ci Cable Tool 	m Auger Auger Fr Rotary Try V		A C B X G H S S V C	S - Au S - Ca X - 1.5 X - 2.1 GP - Ge IP - Hy S - Sp T - Sh VS - W OTHER:	ger/Grab lifomia S 5" Rock O I" Rock O eoprobe dro Pund lif Spoon lelby Tub- ash Samp	ampler fore fore th e e	Sediment sample taken from 0 feet to 2 feet below riverbed.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA SSA HA AR DTR FR MR Hollow Stem Auger Solid Stem Auger Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary Mud Rotary Reverse Circulation Cable Tool RC CT JET D DTC

Jetting Driving Drill Through Casing

Reviewed by:

CAMP DRESSER & McKEE

125 South Wacker Drive, Suite 600 Chicago, Illinois 60606

CORING LOG SF 2004 B12

Client: USACE

Project Location: Chicago, IL

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/22/04 End: 4/22/04

Borehole Coordinates:

N 41.83 E 87.66

Project Number: Riverbed Elevation (ft.): 575.24

Project Name: South Branch South Fork, Chicago River

Total Depth (ft.): 15.8

Depth to Riverbed (ft. BS): -2.2

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

							_	
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			575.2					
	1	24/13.67	0 -	8.5			OL	CLAY-5yr 2.5/1, wet, soft, odor, hair, organics
	2	24/13.67	-	4.4			OL	CLAY-5yr 2.5/1, saturated, soft, odor, hair, and organics
	3	24/13.67	5 <u>70.2</u> 5	32.1	-		OL	CLAY-5yr 2.5/1, saturated, very soft, odor, hair, and organics
	4	24/13.67	-	34.9				
	5	24/13.67	565.2	51.8	_		OL	CLAY-5yr 2.5/1, wet, soft, odor, foil, hair, and organics
	6	24/13.67	10	105.5			OL	CLAY-5yr 2.5/1, wet, soft, odor, hair, and organics
	7	24/13.67	-	221.3				
	8	21.6/12.30	<u>560.2</u> 15	237.5				
			555.2					End of boring @ 15.8 feet below riverbed
	EX	PLANA		F ABB	REVIAT	IONS	REMARKS	

LOGS BUBBLY CREEK.GPJ CDM_CORP.GDT 7/12/04

DRILLING METHODS: HSA - SSA - HA - AR - DTR - FR - RC - CT Hollow Stem Auger Solid Stem Auger Hand Auger

Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool JET D DTC Jetting Driving Drill Through Casing SAMPLING TYPES:

- Auger/Grab Sample
- California Sampler
- 1.5" Rock Core
- 2.1" Rock Core AS CS BX X GP HP SST WS Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample

OTHER: Above Ground Surface

REMARKS

Sediment sample taken from 14 feet to 16 feet below riverbed.

Reviewed by:

CORING LOG SF 2004 B13

Client: USACE

Project Location: Chicago, IL

Drilling Contractor: Aqua Survey

Drilling Method/Rig: Vibracore/Vibracore

Drillers: Mike Beaston, Leroy Brown & Mark Padover

Drilling Date: Start: 4/22/04 End: 4/22/04

Borehole Coordinates:

N 41.83 E 87.66

Project Name: South Branch South Fork, Chicago River

Project Number:

Riverbed Elevation (ft.): 560.89

Total Depth (ft.): 5.5

Depth to Riverbed (ft. BS): -16.5

Abandonment Method: N/A

Field Screening Instrument: PID

Logged By: David de Courcy-Bower

	Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation		Material Description
				560.9 0			aleste.	SM	Sa	and-5yr 2.5/1, loose, odor, little gravel, trace clay, foil, glass,
		1	66/24	 - 555.9	49.0			GINI	bo	ne, organics and wood
				- - - 550.9					Er	d of boring @ 5.5 feet below riverbed
				545.9						
J CDM_CORP.GDT 7/12/04				15 - 540.9						
J CDM		EX	PLANA		F ABBR	REVIAT	IONS	· ·		REMARKS

EXPLANATION OF ABBREVIATIONS

SAMPLING TYPES:

AS CS BX

Auger/Grab Sample California Sampler 1.5" Rock Core

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger SSA HA AR DTR Hand Auger Air Rotary
Dual Tube Rotary Foam Rotary
Mud Rotary
Mud Rotary
Reverse Circulation
Cable Tool
Jetting FR MR RC CT JET

LOGS BUBBLY CREEK.GPJ

2.1" Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample OTHER: Driving Drill Through Casing Above Ground Surface

REMARKS

Sediment sample taken from 2 feet to 4 feet below riverbed. Only 2-4 feet sample taken for VOC's due to low recovery.

Reviewed by:

3850 Set up at campling occation St- 2004_BOX PID mostly O, 1.7 pm peak over freshy Notthen was location Location Babbly Creek-SFSB Chicago River 4/20/04 Decontamination, excess votered to Fr. Evantilo 401-732-3400 Black muck through enthre length of 6152-006 5-802. Sedimit Michies 1.0 1 2 2 X Move westers to was sain start sampling 5.4 Sample handling 0910 ambe, teg exept 237 Otal Chromium Project / Client USACE SF-2084 BOL 4-30-04 Ambigat air Calles 0445 HAS: Steel foedboots, Tyveles, withboo latex spores Main visite I has marine Tradio for energencies DEVE De Course Bronchts Hay after diving for Location Bubbly Creek-SFST3 Chicap River Location 120/04 they put boats in itrived at Site-South Fork South EAKT COAST Sampling vessel no rafffirmen life vests Safety Briefing H+SPlan inhoaded equipment from van and onto Sampling vessels LIVER + water biggest hozard Kirsten Dickson Dave Birthad Mike Bearn Mark Padover 15ACE Nicele ROach e Kon Brown 10-R+ So bet St. 0830 0730

20

Project / Client USACE 6152-006

Stopped because of possible engine problems but OK Consistent. Degends on data use (MW characterize right hear storm drain outtall + 4 diameter cont. Discusped pros + consports valid just not porty tiny 2 locations (By 1802) goother bright re-collected by homogenising of Interest 4,5 PTO 126 to magentized. USACE does not response resompting All agreed to try a grab sample (gone) with for dresging all good import case - 2' PID Switched - disposed of entire core samples hang DONAL Grap Sample. Blek again Halr. Soupy. welpsite - rain coming induding heavy south of bridge 17-71 57-2004-803 break for lunch ODM SCESIFE Setup of GO3 red on radar noring core 1250 Back and boat 1235 Back onsite 051 1330 0

Location SFSB Chicago RIVER Date 4-20-04
Project / Client USA(E 6152-006

Black Jsimilar looking tomething sample wilhair 20 min. apiece Drove vessels back so Morino - Chowleys. Raining a bit harder, plus heavy rain Gr today: 50£ 18 50 mples hr apiece Soon, so finishing Cooles DONA V winde ride N-A Two SS bridge <u>`</u> allected grab sample (57-2004-601 As 6+ 502, 0 16461 902,3013 grabs Szes Owe Book Tomodoes in and & Dom Fed the droppet 1410 - Agua . 545 1400

Project / Client (LSACE - Chicago District

0843 USACE	Stelmen		12-15 fee	OSED from Sun	The state of the s	9 6	3	9m 7100	28-9	2 7 2 2	0922 Mare on	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0840 SF-20	ms/msp	15 / 8 and	- *
	Loaded versels with equipment + supplies	possibility, should clear acter and marning	3		Com Ed has not called back yet JDO ve	(ast week, would review mys in more	4-20-04 which we got 4 pm. Done	Rolling mot in office then Willsky	New bridge which they was flowed to	Voice mail	Universat Bob As like yesserday fraces	Point to soot decired by Come picci	SF-2004-B06	11"4" to seliment, only I penetration	Moved 25-30 away I was the	penetration again. At 4-21-04
5670			0750	0800							08/5				0830	

Location SFSB Chicago River Date 4-21-04
Project / Client USACE 6152-906

assume compression - dicustion betwo D. Decomme Ala 4-31-04 exceptions shirt sheeps to 50 -80 % of penetration, this site has been Fulling through cotaber or day Clark sugarios Padover. Passerstypical compession leads Sipolar, OK as long as who consists caye 120 63 of 4-6 depth so sample but born At 5.5's andy agains is between matrix 08 below (except first 2 We day day) Rower and Mole Roun, du Djostal and Seconstrum move to BO9- ho, GOY Great (same location) Black sounde but top two feet more condy. 3 tries with poner grab samplers no 6.6 ponetration, 4 Core length Fire or to yesterday, 1030 SF- 2004- 1308 hot peconery. 1010 Mave 1/0 808 . Photo 2490 1000 Decontamination 1020 Start Coring

Location SFSB Chicago Ring Date 4-31-04
Project / Client USA CE 6152-006

So-so of grant of the solution				1						1	ļ	1					
SE. 2004. G.04 Back, so. 10, 10 - 40 - 50 R. 4. 4 - 4 - 2 je., 1 - 40 - je Bog SE. 2004. BOg Rack schwart with od Sendle layer (se 20) O Move on 40 G03 41 402 jus, 1 - 402 jus O Move on 40 G03 The Bos vibra Set hasing start of	Ξ	8	Σ	9	ed	3	Ž	7 4	4	3	+		3	3	_C		÷
SF. 2004. GO4 Black, so. et gots, but not Boa 2 jas, 1 - 40 ja Sendle leve (22 jas O More of Bos vibra Brak for lanch dri Set manny and delication			,	1	7		•	•				l .		,			
SF. 7004. G.04 Back, se. ey, ober but not Bog 2 jar., 1-40. ja Bog 2 jar., 1-40. ja SF. 3004. BOg 6 Sendle leyer (se. xo VOC. 6.8' P.D 50 Sendle leyer (se. xo O More on to Bos. vibra Brak for landle dri Set many for leger Set many for			•	٢	H	X	a	4	5				1				1
Back some observations 4 - 9 - 2 jar., 1 - 40 - jar. 5 - 2004- BO9 8 (atk schwart with observations) 8 (atk schwart with observations) 9 - 6 - 8 - 8 - 8 - 8 - 6 - 6 - 6 - 6 - 6			SE		10	2,0	.)	<u>,</u>	70								
864, 89, 14, 1-40, 19 809 809 809 814, 84, 19 814, 84, 19 814, 84, 19 800, 800, 800 9110, 82, 19 800, 800 9110, 82, 19 9110, 82, 18 9110, 82, 18 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82 9110, 82			_						_	•	•	•	ا ا	•			_
809 809 809 809 809 809 809 809 8004 8004			۵	ğ	Y	Š	¥		Ž	5	ţ	ş	0	3	3	1	
SF. 2004- BO9 SF. 2004- BO9 St. 2004- BO9 St. 2004- BO9 St. 2004- Co 3 There is the Go 3 There to Bos vibra Set Marine St. 2004- Co 3 There to Bos vibra Set Marine St. 2004- Co 3 The Box S			Z	4	2 2	41	7	6									
809 SF. 2004- BO9 8(atk schwyr wyd al 8(atk schwyr wyd al 9000- 6-8' Pro 50 9000-			7		9	~			-			. 5	7	,0	2	_	
SF. 2004- BO9 Black schiumt with od Sandler lane (see 190 VOCC- 6-8' PTD 50 9 mb semele 9 mb semele 1 402 jan, 1-402 jan 1 402 jan, 1-402 jan 1 402 jan, 1-402 jan 5 st. Marine (see 190 5 st. Marine) (see 190 6 s	=	0		C	4		5	•									
1000 6 8 P.D 50 1-42 July 1-42 1-42 July 1-45 1-45 1-45 1-45 1-45 1-45 1-45 1-45	•		V	ì	ñ	3	3	K	C	_			Pk	3	ř	è	1
2 4 2 4 8 8 2 4 8 8 8 8 8 8 8 8 8 8 8 8			70			>	-	2	٠		,		<u> </u>	9			
1000 6 8 PED 50 2-4-50 3-40-2 jors 2-4-50 3-40-2 jors 12-4-50 3-40			0	ğ	Y	Å	4	ş	$\overline{}$	3	1	0	2	1	Z		
10CC-6-8' PTD 50 5-9-2-19-3-2-4- 9-6-2-19-3-4-6-3-3-4-6-3-3-4-6-3-3-4-6-3-4-5-6-6-3-4-6-6-3-4-6-6-3-4-6-6-3-4-6-6-3-4-6-6-3-4-6-6-6-3-4-6-6-6-6				V	5	32	7	3		T	**	9		Ź		6	
9-402 jors 2 - 4 9-402 jors 2 - 4 9-402 jors 12 - 4 9-2004-603 1-402 jors 1-402 jors 100-603 1-402 jors 1-402 jors 100-603 1-402 jors 1-402 jors 100-603 1-402 jors 1-402 jors 100-603 1-402 jors 1-402 jors 1-402 jors 100-603 1-402 jors 1-402 jors 1-40						/			~	. :					T		
1- 402 jons 22 - 44 1- 402 jons 1- 40603 1				!				1		, 4		. 7					•
7- 902 jons 2 - 4 The Semple CO3 1- 902 jons 1 - 402 jons 2 - 402 jo				Š	Ľ	4	?		\mathbf{Z}	9		Z	?-(0			
972 Samele 603 972 Samele 603 1 402 July, 1-402 July				5	0	() -	, ,		·	•	7 J	•	,		0	
976 Serve 6 GOS 4 902 July 1 - 402 July 2 -	-				1	7	>	~	-	4		P . 1	72	7			_
9 mb Semple 603 4 402 yrs, 1-402 yrs, 1000 Beck for 1 meh-dring 1 ft. 1											1					1	5
970 Samele (603 1 402 July, 1-402 july, 1000 S 1000 to 805 - Vibra 100 to 805 - Vib	-	<u>r</u>	C	Σ	1			7	6	Ö							ىر
970 Semple 60 3 1 402 1915, 1 - 400 3 1000 to 805 · Vibra 7 to 8 600 1 8 to 6 7 to 8 600 1 8 to 6 8 to 8 600	٧.		\	. 1		3			7			-	2	**	2	5	13
1- 402 July, 1- 402 yr Move 40 805 - Vibra 7-E 8 don't 8 - 45 G				5		V)	Į,	<u>.</u>	3	(1			>
1 402 July, 1- 402 ya More to 805 - Vibra 7 tt 3 8 600 8 it 5 G		3			Ž	•	3	Q.	3	5	ח			1	۵		
Move to Bos - Vibras 7 to 2 8 done 8 14 5 G				- 4	9	72	. 5			7	V	. 9	-			Ì	
Plove to BOS - Vibrae 7 tt 3 B Con 8 1 5 G		•						:		-		5:					
Beck 6- 1 1 61 - 4.		<u>r</u>	Ω	Σ	Z	ナ	•	80	Ņ	>	15.	3	9	1		ļ 	
76 3 B don 8 14 5 G				a		۷	9		-	1,	١	7		7	4		Ĺ.
of Marine " PP. 2	,		•	11		,	'n		Y .	5	. 4	5 (1			£	7
TATION OF THE	- 3	3	è	1			3 ,	٠. ١	1	8	ر ا	7	इ	}			
	_	2	D		•	Ī	3				7		Q	C	3	_	Q

Location SFSB Chicago R. Date 4-31-04
Project / Client USACE 6/52-006

Photo 2497 Spyc days between Hwy 55 bridge and L same for dup. - for 9.2. jers, from 46 internal higher PSD 136 ppm Pick up Sample jars + coolers from lab. Dickson + DeCoursy Bower to office to I'm example Centification of one cleaned duplicate 5 - 4.2. Jan, 2 - 4.2. Jar. sci/spec 372204 Precleaned tracks bridge. SF-2004- D05 425 SF-2004 - BOH 1415 to hew location 345 SF-2004- BDS 315 Launch again

Called Mirtem lab- Evan. Instruc.

Bjosted tollowypar Togmail 818

Location SFSB Chicago Rive Date 4-31-04¹³
Project / Client USACE 6/53-006

24 \ \(\text{Carticle by the bound of the b

0725 CAMONSITE - Same 7: Bjossy Ages Struey - Parlove, Broites Pate 4-32 -045 Dickson, De Coursey Bower. 0745 Hts briefmg V No problems 900-ES19 than previously Se uses Launch for southernmost 0400 Move on to rext lectron USACE - Roach onsite 204 Black, but Aiffern & Scali. 100 - more gravel, say 5.5 Peretration Photos 25,25/6 SF-2004-513 Location Chicago SFSB Project / Cilent LSACE 0728 Photogaso3 Sts On shore - sub and uspecialists Date 4-21-04 depet 10-12 529 pm Two cooper sont to Mitten 5 - 902 Jan, 2-402 jan 6152-006 Sampled this 3 interval Dropped affect Ed Exindenteur Chicago Sample packing C.C. 1510 SF-2004-BIA Location Chicago SFSB Project / Client : LASA C E 1630 CDM 445.0E 1700 to OFFICE

First try power just water, ok 2 m 145 50-44 OF 35-14 St. 6-14ge G-05: SF-2004-GOS load supplies into wehicles and 030 A+ location B10 + G05 - 4 02 jon 40-86-4 1045 SE. 2004 - BK 125 penetration Dave Dotal Location Chicago SFSB Back at marina 5 - for jars Project / Client USACE - Ferrer 0955 II penctration, 7 pecoustry
Photo 2523 Shale mest higher Pa Shallow, Can't push in manually
so Agua Suren, Cut 3' Off- Lo
of core to read to allow relation, PID higher dupest 237 pm.
Again black seliment some hans y VOCs Note for Bis: ran show an 9 02 Jans de to BiA Kodo, so used Date 4-33.04 0930 5-902. jors + 2-412 jors 40.405 1537 6152-006 11 - 402. jak + 1- 402. jak 25/8 1020 Move onto BIO turning basin 0915 SF. 2004-B12 SF. 2004- BI 89 4-22-04 0905 Setup at B12 Location Chicago SPSB Project / Client KSACE

Date 4.37-04 6152-006

Appendix D Table of Contents

Chain of Custody Forms

Data Summary Table

Sample Delivery Group (SDG) Narrative

Appendix D Chain of Custody Forms

Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page / of

		(0)												100	No.								
COMPANY CDM				Д.	HONE	PHONE 312 - 34	346-50D COMPANY	COM	PANY								PHONE	当			Ц	AB PR	LAB PROJECT #:
NAME DAVE BIOSTAD	-	٠.		щ	74X 3	2-34	FAX 312-346-5228 NAME	NAN	刮								FAX					B	芸
ADDRESS 125. S. Wacker Dr	8 Dr	Λ 1	Suite Labo	ر لو	g			ADD	ADDRESS												<u> </u>	URNAR.	OUND TIM
CITY/ST/ZIP (Micago IL	IL 60606	9	Š					CITY	CITY/ST/ZIP	۵												F	\bigcirc
CLIENT PROJECT NAME: 0	<u>1</u>	IENI	r PROJ	ECT #	#:	D.	CLIENT P.O.#:						4	1			1	D	PI	X/.	2		
Bubbly Creek-South Fork South Dranch Chicago River 10152-006	1 tork	5)0	4	Ş	وِ							-41	38	(4)	3 /	ESIED	D.	YSES	05/0/0	Sell Sell	Dy	B	Si's
SAMPLE DATE IDENTIFICATION SAM	DATE/TIME SAMPLED	COMPOSITE	Sedimon	WATER		Sediment Sediment	LABID	# OF CONTAINERS		Ledals (1)	(II) DIDA		SAME MINISTER OF STATE OF THE S	Ser Com	1000 N	10 - 10 T	140/0/	The Part	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Stat billide Vo	The Month	AM LOS AND	WENTS
3F-2004-BOI 4/20 104	40/	-	-		<u> </u>	×	0	1	×	×	×	×	×	×	×	X	X	X	X	×	X	×	
5F-2004-BOZ 4/20/04	/0/					×	707	7	×	×	×	×	×	×	+	×	×		1	×	×	×	
~	すっ					×	707	7	X	×	X	×	×	×	X	×		×	×	×	×	×	
7	40,00		×				401	ហ	×	×	×	X	×	X	X	×	X						
SF-2004-602 4/20	/٥٠		×				205	Ŋ	×	×	×	×	^ ×	×	×	X	X						
														-									
																				-			
	/											· .									-		
	/															_							
	/		-																	-			
		_																					
	/																						
TSF# RELINQUISHED BY		Ω	DATE/TIME	IME			ACCEPTED BY	PTED	ВУ			ŭ	DATE/TIME	ИE	ADI	ADDITIONAL REMARKS:	AL RE	MARK	S:			COOL	COOLER TEMP:
Kirsten Diekson	_	/20/	4/20/04/1512	SI		Via	Via Fed Ex 8427 4419		2180				_		₫ €	Please ensure	6 63	UPE	a 1	Jos		1	5°C
The second secon	The Broadles and the same of t		f			H	4001	\ (7=	1/1/	167 /08/45	37.47	_	matches the Sope	ses Ses	44		8		2	of Work
			_			>						+	_							•			
, in		371777	1 .	, 4 0 0	Vacob Aport V	200		VELTOW.	1 .	PEDOPT	200			1		0,41	1						

WHITE: LABORATORY COPY

YELLOW: REPORT COPY

Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

		The Mean of the											(0)1((3)(0)((3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3	10,01									
	COMPANY CDM			HONI	312-		COM	COMPANY								PHONE	ш			77	LAB PROJECT #:	CT#:	r
	NAME DAVE BIDS	Biostad		AX	(2-5	FAX 312-346-5228 NAME	NAM	Ħ								FAX					C0344	7	· ,
	N	CKS DY	SUITE	4	200	o O	ADDRESS	ŒSS								:	*			2	TURNAROUND TIME:	ID TIME	· · · ·
			9000	Š			CITY	CITY/ST/ZIP													6		
	GLIENT PROJECT NAME: BUBBIY Creek-South Fork	년 -	CLIENT PROJECT #:		<u>1</u>	CLIENT P.O.#;					7,	4,		EQUE	REQUESTED ANALYSES	NALY	ES			201	50		т
	South Branch Chicago River		900-ES19	9							Pul	500 to	13			(Q)	136	N. X.	201		X50X	رخ	_
	SAMPLE DATI	DATE/TIME SAMPLED COMPOSITE	HAPA + CALINEA + TANIDA >	TIOS	Sedinent	LAB ID	OF CONTAINERS	· 4	Metals (1)	742001	10 5 50 1 10 5 50 1 10 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	1858 ED	(8 (8 (8)) (8	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30105	13 05 3 00 V	TO THE POOL OF THE	5/8/2/19/00/	A SAMA POR S	TO THE PROPERTY OF THE PROPERT	STA	
O	SF-2004-BOS 4/21/04	70	;		×		#	×	X	4-	X	X	X	X	X	X	X	×	X	>			_
~	SF-2004-DOS 4/21/04	4			X		7	×	×	×	ン	×	×	×	×	X	×	X	PH ONLY				
∞	4	4			X		7	×	X	^ ×	~ 文	X	X	X	×	×	X	^ ×		×	×		
o	SF-2004-BO9 4/21/64	//			X		7	×	×	×	×	×	×	×	X	×	×	X	$\frac{x}{x}$	_	 ×		1
<u>ე</u>	SF-2004-BOH 4/21/04/	//			X		7	×		×	ン	×	×	\times	X	×	×	λ	X		λ		
	SF-2004-603 4/21/04		X				Ŋ	×	×	×	×	×	X	X	×	×			-				····
		\			-								.	.					-				
		, ,		1	-		-	1	+	-	-	\perp	_			1	1	1	+	+	+		,
		, ,										\perp	_					+	+	十	-		
		,			+				+			_	_					\dashv	+	+	-		-
		, ,			+		-			+	-	_	_					+	+	_	+		
	TOGE REI INOTINCHED BY		DATE/TIME			ACCI	PTED					DATE/TIME	_ _	A D.D.	ADDITIONAL REMARKS:	- REV	AA PKS	\dashv	1		COOLER TEMP.	reMp.	
	Liste	ک	4/21/04/ 163C	ő	V12 842	Fed EX 7 4419 216	8	69/						9	Please	ezis Siza	ensure all	all all	tod	<u></u>	3		
		-	/		6:1	\mathcal{M}				1/2	143201), O	190	3 5	modenes the Scope	દું જુ	ا الم	30	90				r
) () 4		/	<i>'</i>								/		٥	かり	Work	¥						
	2	CIHM	WHITE: LABORATORY COPY	TORY	COPY	- - - - - - -	XELL	YELLOW: REPORT COPY	PORT	COPY			BINK	: CLIE	PINK: CLIENT'S COPY	OPY							1

Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

							0 V V	100				10.00			AR PROTECT#	IRCT #:
·	PHON	PHON 312-346-500	COMFAINT							Ħ.	PHONE			i		
Biastad	FAX	FAX312 - 3410 -5228	NAME							FAX				U	Q_{ij}	703 4H
las. S. Wacker Dr Suite	60		ADDRESS											Ħ.	JRNARO	TURNAROUND TIME:
9	909		CITY/ST/ZIP												<u> </u>	\Rightarrow
CLIENT PROJECT NAME: BUBBIY Creek - South Fork South Branch - Chicago River	CLIENT PROJECT #: 6/53 -006	CLIENT P.O.#:				WATER		REQ.	UESTE	D ANA	LYSES	13	3	035	100 de	AIG.
DATE/TIME SAMPLED	SOIL SOMPOSITE	Codiment LABB D	# OF CONTAINERS	My STOP TO STO	\ 16A 40A	SON	30/	Carrie William	100 8 100 100 100 100 100 100 100 100 10	N. N. N. S.	100 mg 10	3812000	# 5 3 10 10 10 10 10 10 10 10 10 10 10 10 10	1 Jos 7 Wood	San Allanda San Al	SCOUNT CONTROLL SOLL SOLL SOLL SOLL SOLL SOLL SOLL
4)21/04/		×	×	×		X	I 🔪 🦠	×	×	X	×	×	×	X	×	
4/21/04/		×	ر ×	×	×	×	×	×	×	X	X	X	×	×	X	
SF-2004-GOU 4/21/04	×		5 X	×	×	X	X	×	×	×						
BOT 4/21/04		×	/ × 6/	メ	×	×	×	X	×	X	×	×	×	×	×	Settr AS/ASD
/																,
/																
/																
,																
/					<u></u>											
_																
				-					-	-	ļ 					
									-							
RELINQUISHED BY	DATE/TIME		ACCEPTED BY			DATE/TIME	TIME	\delta \	ADDITIONAL REMARKS	NAL R	EMAR	SS				COOLER TEMP:
)ideson	4/21/04/1643	Via Fed EX 8427 44	18 614 1419 201	2170				1 6	Please ensure all requested motives	22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 83 +	ll analyses the Soope	yses ppe		3ª
		(Sami)			42	72201 OF0C	0660		OF Work. Use SF-	られていれている。	\$0°	- 40	807	4	Ĺ	
	_) 	2	1/51	1ST		MS/WSD	-		
	WHITE: LABORATORY COPY	Y COPY	YELLOW: REPORT COPY	PORT CO	P.Y.		固	NK: CI	PINK: CLIENT'S COPY	SCOPY						

Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

					and the second s		
COMPANY CDM	РНС	PHONE - 34 6-5000	COMPANY		PHONE	ഥ	LAB PROJECT #:
NAME Dave Bjostad	FAX	FAX312-346-5238	NAME		FAX		CO344
ADDRESS 125 S. Wacker Dr., Swite 600	r., suite600		ADDRESS				TURNAROUND TIME
	90809		CITY/ST/ZIP				27.0
ork Sicago	CLIENT PROJECT#:	CLIENT P.O.#;		8/4	QUESTED AN	1 4	Service of the servic
SAMPLE DATE/TIME IDENTIFICATION SAMPLED	COMPOSITE SALMSTER WATER SOIL	Sediment Fabrus B	# OF CONTAINERS	15 05 05 05 05 05 05 05 05 05 05 05 05 05	77N 1 20 20 20 20 20 20 20 20 20 20 20 20 20	HA HIVE A A DOT A LONG A	25 9 × 40 × 40 × 40 × 40 × 40 × 40 × 40 ×
5F-2004-B13 4/22/04 0830		9/ ×	X	┡	X X	XXX	X
5F-2004-B12 4/25/04 0915		X /7	7 × × ×	X X X	X X	X	X
SF-2004-BII 4/25/04 0955	-	× /8	7 X X X		X X X	X	X
SF-2004-GOS 4/22/04/ 1030	X	61	x x X	X X X	X X		
SF- 2004- B of 4/20/4 loug		X 26	メ × × L	x x x	Х Х Х	^ X X X	×
/ /							
/			-				
1				-			
1							
. /							
. /							
TSF# RELINQUISHED BY	DATE/TIME	ACC	ACCEPTED BY	DATE/TIME	ADDITIONAL REMARKS	1ARKS:	COOLER TEMP:
Avia M. Bjots	S511 hores-h	Fed Ex. No.	-6144-7248	1 4	Make sw	e all reg	30
	/	Staws	-	17341/0900	Sche of		3
04	/				100 PDC 100 PD	r boitsatticets	<
	WHITE: LABORATORY COPY	RY COPY	YELLOW: REPORT COPY		PINK: CLIENT'S COPY		

MITKEM CORPORATION

Sample Condition Form

Page of 1

Received By: Fo	Reviewed By:	ΔV	Date: 4	2104	M	IKEM	Projec	t (3511
Client Project:	Clie	ent Cl)m1		•				
•					Prese	rvation	(pH)		VOA
Condition:	•		Lab Samp	le ID			HCI N	o M	latrix
)Custody Seal(s)	Present / /	Absent)	T					05
	Coolers 1	Bottles		7					1
	Intact /	Broken		3 .	1				
Custody Seal Numbe	ers .			4					7
	NN			5				\neg	J
		_	400 39	K					
•									
•		-							
		-			 		 -		
					-		 	\dashv	
B)Chain -of- Custody	Present	Absent					 	-+	
Jonain -or- Oustouy	(resem)	rwsciit						_	
								\dashv	
							\vdash	-	
1)Airbill(s) Pres	sent Absent	*	·	7		<u> </u>		_	
,,(,				 -	 		1-1	\neg	
Airbill Number(s)	812744P 218	()						_	
	Joseph Marie	~			1				
	*****	-		 .	1	·			
5)Cooler Temperatu	re - S°C	•	3.4		1				
		-							
Coolant Condition	OK								
	$\overline{}$								
6)Sample Bottles (Ir	ntaci)Broken/Lea	ıking							
	· .1 :								
7)Date Received	4 /2 /25								
	0.110		ļ		_ 				<u> </u>
8)Time Received	8145					ļ	11		
VOA Makin Vain			ļ			<u> </u>	┦╌┦		
VOA Matrix Key:	>=#	A 4!a	<u> </u>				 		
US = Unpreserved S		A = Air	<u> </u>		<u> </u>	ļi	1-1		
UA = Unpreserved A		H = HCI	 			<u> </u>			
M/N = MeOH& NaH		E=Encore		<u> </u>	-	ļ			
N = NaHSO4 M =	= MeUH		<u></u>	<u> </u>		 	1		
							4		
1			1		1	1	1		

MITKEM CORPORATION

Sample Condition:Form

Page _fot/_

Received By:\\\\\\/\/				4722-04					6034
client Project:	Clie	ent <i>C[</i>	m		·				
· · ·						rvation			VOA
Condition:				ample ID	HNO3	H2SO4	HCI N	2O	Matrix
)Custody Seal(s)	Present	Absent	CO3	44-06					
	Coolers /	Bottles		-01					
	(Intact) /	Broken		- 08					
Sustody Seal Number	s in / s			- 09					<u> </u>
	NIA	_		-10					
		_		1-11					
		-		1-12					
				1 -13					
		_	<u> </u>	- 14					
		_	CO34	44 - 15					
			<u> </u>						
B)Chain -of- Custody	(Present)/	Absent			/				
							1		
		e							
4)Airbill(s) (Prese	ent/Absent	.9		7					
Airbill Number(s)	8427-4419	2169	ļ		1				1
	8477-4419 8477-4419	7-2170			1				
		- '			1	·			1
5)Cooler Temperature	20	- .	37.						
		-							1
Coolant Condition	ICP				1				
		-			1				/
6)Sample Bottles (Int	act/Broken/Lea	kina			1		1-1		/
,			 		1		1	_	 /
7)Date Received	4-22-0	4	ļ ———		1		1		/
		_			1		1-1		1
8)Time Received	0900	•		······································	1			\neq	
***	<u> </u>	-			-		 . , 	_	
VOA Matrix Key:			1		1	 	1/1		1
US = Unpreserved So	oil	A = Air			1-	-	1-1	_	1
UA = Unpreserved Ac		H = HCI	-	······································	 	/	11	_	
M/N = MeOH& NaHS		E=Encore	-	· · · · · · · · ·	-		1-1		-
N = NaHSO4 M =		L-LIWIE	-	·	//-		 		
Harrows M-	MCOI I				1-			_	ļ
			ļ			ļ			
					1	 	1	==	

MITKEM CORPORATION

Sample Condition Form

Page | of |

lient Project:	Clie	$nt \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$	m				i
				Prese	rvation	(pH)	. VOA
Condition:			Lab Sample ID	HNO3	H2SO4	HCI Na	o Matrix
)Custody Seal(s) Pro	esent /	Absent .	10344-14				
	olers /	Bottles	-17				
·	act) /	Broken	-18				
Custody Seal Numbers			- 19				
•	NIH		CO344-20				
		•					
3)Chain -of- Custody Pr	esent	Absent		·	٠.		
	•			·			
1)Airbill(s) (Present)	Absent		7				
	244	,					
Airbill Number(s)	8427						
7	1419	•					
	206	_			·		
5)Cooler Temperature	30	•					
		_					
Coolant Condition	ICC						
6)Sample Bottles (Intact	Broken/Lea	king					
7)Date Received	7-23-04	/				T	
-		-					
8)Time Received (3 <i>9 00</i>						
·		-	,				
VOA Matrix Key:							
US = Unpreserved Soil		A = Air					
UA = Unpreserved Aque	ous	H = HCI					
M/N = MeOH& NaHSO4	•	E=Encore					
N = NaHSO4 M = Me	ОН				1		
				-	1	1-1	
					1	1 1	
			. _		1		

Comments / Remarks

Appendix D Data Summary Table

Appendix D

Data Summary Table Contents

Volatile Organic Compounds	14 pages
Semi-Volatile Organic Compounds	12 pages
Polynuclear Aromatic Hydrocarbons (PAH-SIM)	5 pages
Polychlorinated Biphenyls (PCBs)	4 pages
Metals/Inorganic Compounds	4 pages
Wet Chemistry	4 pages
Volatile Organic Compounds - TCLP	3 pages
Semi-Volatile Organic Compounds – TCLP	3 pages
Metals - TCLP	3 pages
Herbicides - TCLP	4 pages
Pesticides - TCLP	3 pages
Geotechnical Analysis	3 pages

printed 7/14/2004 Page 1 of 14

Summary Table of Analytical Results Volatile Organic Compounds South Fork/South Branch Chicago River, April 20-22, 2004

(apo)			Sample Code	SF-2004-B01A	SF-2004-B01ADL	SF-2004-B02	SF-2004-B02DL	SF-2004-B03
Code)						000.000.00	000 . 000 . 0	
Code)			Location Sample Matrix	SF-2004-B01A Sediment	SP-2004-B01A	SF-2004-B02 Sediment	SF-2004-802 Sediment	SF-2004-B03 Sediment
Code)	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/20/2004	4/20/2004	4/20/2004
	(Group Description)							
	Occupation of the contract of	0 90908/8/0	02/01	-		7		
	Chloromethane	SW8260B-S	00/KG	2 5	54 []	5 6	33 0	12 0
75-01-4 V	Vinvi Chloride	SW8260B-S	UG/KG	10 0	540	13 6	33 (1 0
	, Bromomethane	SW8260B-S	UG/KG	10 0	54 U	13 0	33 0	12 0
	Chloroethane	SW8260B-S	UG/KG	10.01	54 U	13 U	33 0	12 0
75-69-4 Tr	Trichlorofluoromethane	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 U
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	10 U	54 0	13 U	33 0	12 U
67-64-1 A	Acetone	SW8260B-S	UG/KG	620 E	540 D	480	810 D	680 E
74-88-4 lo	lodomethane	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 0
	Carbon Disulfide	SW8260B-S	UG/KG	Г9	13 0	<u>г</u> 6	17 0	11)
	Methylene Chloride	SW8260B-S	UG/KG	2 3	28 DJB	11	33 0	3 7
	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	10 01	54 U	13 U	33 0	12 0
4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 0
75-34-3 1,	1,1-Dichloroethane	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 0
108-05-4 Vi	Vinyl Acetate	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 U
	2-Butanone	SW8260B-S	UG/KG	250	240 D	220	440 D	280
	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	<u>Р</u>
7	2,2-Dichloropropane	SW8260B-S	UG/KG	10 U	54 U	13 0	33 ∩	12 U
	Chlorobromomethane	SW8260B-S	UG/KG	10 U	54 U	13 U	33 ∩	12 U
	Chloroform	SW8260B-S	UG/KG		12 DJ	13 U	33 0	12 U
	1,1,1-Trichloroethane	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 U
3-8	1,1-Dichloropropene	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 0
_	Carbon Tetrachloride	SW8260B-S	UG/KG		54 U	13 U	33 0	12 U
01	1,2-Dichloroethane	SW8260B-S	UG/KG	10 01	54 U	13 U	33 ∩	12 U
	Benzene	SW8260B-S	UG/KG	15	54 U	31	18 🖸	18
	Trichloroethene	SW8260B-S	UG/KG	10 U	24 ∪	13 U	33 ∩	12 U
	1,2-Dichloropropane	SW8260B-S	UG/KG	10 U	24 ∪	13 U	33 ∩	12 U
	Dibromomethane	SW8260B-S	UG/KG	10 U	54 ∪	13 U	33 ∩	12 U
	Bromodichloromethane	SW8260B-S	UG/KG	10 U	24 ∪	13 U	33 ∩	12 0
ر ا د	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	10 U	54 U	13 0	33 0	12 U
	4-Methyi-2-pentanone	SW8260B-S	UG/KG	10 U	54 ∪	13 0	33 0	12 0
•	Toluene	SW8260B-S	UG/KG	7	54 U	51	44 D	160
12-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	10 C	24 ∪	13 U	33 ∩	12 U
	1,1,2-Trichloroethane	SW8260B-S	UG/KG	10 OL	54 U	13 U	33 ∩	12 U
	1,3-Dichloropropane	SW8260B-S	UG/KG	10 U	24 ∪	13 U	33 0	12 U
127-18-4 T	Tetrachloroethene	SW8260B-S	UG/KG	10 U	54 U	13 U	33 0	12 U
591-78-6 2.	2-Hexanone	SW8260B-S	UG/KG	10 U	54 U	13 U	33 U	12 U

Summary Table of Analytical Results Volatile Organic Compounds

South Fork/South Branch Chicago River, April 20-22, 2004

	0)	Sample Code	SF-2004-B01A	SF-2004-B01ADL	SF-2004-B02	SF-2004-B02DL	SF-2004-B03
		Location	SF-2004-B01A	SF-2004-B01A	SF-2004-B02	SF-2004-B02	SF-2004-B03
		Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Analytic	thod th	Unit Date:	4/21/2004	4/21/2004	4/20/2004	4/20/2004	4/20/2004
SW8260B-S		JG/KG	10 C	0 24 □	13 0	33 0	12 U
SW8260B-5		UG/KG	10 C	24 ∪	13 0	33 ∩	12 U
SW8260B-5	•	UG/KG	10 U	54 U	13 U	33 ∩	12 U
SW8260B-5		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	9	54 U	13 U	11	82
SW8260B-S		UG/KG	21	21 0	620	470 D	009
SW8260B-S		UG/KG	32	27 DJ	630 E	440 D	200 E
SW8260B-S		UG/KG	53	48 DJ	1200	910 D	1100
SW8260B-S		UG/KG	10 U	54 U	13 U	33 0	12 U
SW8260B-S		UG/KG	10 U	54 ∪	13 U	33 ∪	12 U
SW8260B-S		UG/KG	7	54 U	63	42 D	28
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∩	12 U
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	10 U	54 U	100	93 D	130
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	51	28 DJ	460	390 D	430
SW8260B-S		UG/KG	10 U	54 U	13 U	33 0	12 U
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S	_	UG/KG	110	□ 08	1100 E	1000 D	3 066
SW8260B-S	_	UG/KG	10 U	54 U	130	110 D	180
SW8260B-5		UG/KG	75	24 U	320	280 D	220 E
SW8260B-5		UG/KG	10 U	54 U	13 U	33 ∩	12 U
SW8260B-S	_	UG/KG	10 U	54 U	13 U	33 ∩	12 U
SW8260B-S		UG/KG	25	24 DJ	320	270 D	470 E
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	10 U	54 U	13 U	33 ∪	12 U
SW8260B-S		UG/KG	10 U	54 ∪	13 U	33 ∪	12 U
SW8260B-S	_	JG/KG	10 U	54 U	13 U	33 U	12 U
SW8260B-S		JG/KG	92	30 D7	150	410 D	180
SW8260B-S		UG/KG	10 D	54 U	13 U	33 U	12 U

B = Boring/Core sample

DL = Dilution

G = Grab sample

SF = South Fork South Branch Chicago River

UG/KG ≈ micrograms per kilogram

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)

J - Estimated concentration

B - Detected in associated blank sample

D - Compound is identified at a secondary dilution factor E = Above calibration range

Summary Table of Analytical Results Volatile Organic Compounds South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B03DL	SF-2004-B04	SF-2004-B05	SF-2004-B05DL	SF-2004-D05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sed. (Duplicate)
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/20/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	(Group Description)							
75-71-8	Dichlorodifluoromethane	SW8260B-S	UG/KG	28 U	10 0	10 U	19 0	15 U
74-87-3	Chloromethane	SW8260B-S	UG/KG	28 ∪	10 U	10 0	.0 61	15 U
75-01-4	Vinyl Chloride	SW8260B-S	UG/KG	28 0	10 U	10 01	19 U	15 U
74-83-9	Bromomethane	SW8260B-S	UG/KG	280	10 U	10 01	19 0	
75-00-3	Chloroethane	SW8260B-S	UG/KG	28 0	10 U	10 01	19 U	15 U
75-69-4	Trichlorofluoromethane	SW8260B-S	UG/KG	28 ∪	10 U	10 U	19 U	15 U
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	28 ∪	10 U	10 O	19 U	15 U
67-64-1	Acetone	SW8260B-S	UG/KG	1300 DE	77	1000 E	Q 009	3700 E
74-88-4	lodomethane	SW8260B-S	UG/KG	28 0	10 U	10 01	19 U	15 U
75-15-0	Carbon Disulfide	SW8260B-S	UG/KG	18 DJ	10 U	15	14 DJ	37
75-09-2	Methylene Chloride	SW8260B-S	UG/KG	10 DJ	3 JB	10 01	19 U	ر 8
156-60-5	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
1634-04-4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	28 ∪	10 U	10 U	19 0	15 U
75-34-3	1,1-Dichloroethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
108-05-4	Vinyl Acetate	SW8260B-S	UG/KG	28 U	10 0	10 U	19 U	15 U
78-93-3	2-Butanone	SW8260B-S	UG/KG	Q 089	26	360	240 D	1500 E
156-59-2	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	28 U	10 0	10 U	19 U	15 U
594-20-7	2,2-Dichloropropane	SW8260B-S	UG/KG	28 U	10 0	10 U	19 U	15 U
74-97-5	Chlorobromomethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
67-66-3	Chloroform	SW8260B-S	UG/KG	28 ∪	2	10 U	19 U	15 U
71-55-6	1,1,1-Trichloroethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
26952-23-8	1,1-Dichloropropene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
56-23-5	Carbon Tetrachloride	SW8260B-S	UG/KG	28 U	10 U	10 U	19 0	15 U
107-06-2	1,2-Dichloroethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
71-43-2	Benzene	SW8260B-S	UG/KG	15 DJ	10 U	4 U	19 U	22
9-01-6	Trichloroethene	SW8260B-S	UG/KG	28 ∩	10 U	10 01	19 U	15 U
78-87-5	1,2-Dichloropropane	SW8260B-S	UG/KG	28 <u>0</u>	10 U	10 U	19 0	15 U
74-95-3	Dibromomethane	SW8260B-S	UG/KG	28 ∩	10 U	10 U	19 0	15 U
75-27-4	Bromodichloromethane	SW8260B-S	UG/KG	28 U	10 C	10 U	19 0	15 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	28 U	10 C	10 U	19 U	15 U
108-10-1	4-Methyl-2-pentanone	SW8260B-S	UG/KG	28 U	10 U	10 U	19 0	15 U
108-88-3	Toluene	SW8260B-S	UG/KG	140 D	2 7	19	16 DJ	20
10061-02-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 0	15 U
2-00-62	1,1,2-Trichloroethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 0	15 U
142-28-9	1,3-Dichloropropane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
127-18-4	Tetrachloroethene	SW8260B-S	UG/KG	28 ∪	10 U	10 U	19 U	15 U
591-78-6	2-Hexanone	SW8260B-S	UG/KG	28 U	10 U	10 01	19 U	15 U

Summary Table of Analytical Results Volatile Organic Compounds South Fork/South Branch Chicago River, April 20-22, 2004

	•		Salliple Code	31-2004-B03DL	31-2004-B04	SP-2004-B03	30-4-004-000L	507-4007-15
	_		11777		- 100 FO			
			Location	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-B05	SF-2004-D05
1	;	;	ple I	Sediment	Sediment	Sediment	Sediment	Sed. (Duplicate)
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/20/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
124-48-1	Dibromochloromethane	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
106-93-4	1,2-Dibromoethane	SW8260B-S	UG/KG	28 U	10 U	10 01	19 U	15 U
108-90-7	Chlorobenzene	SW8260B-S	UG/KG	28 U	10 U	10 01	19 U	15 U
630-20-6	1,1,1,2-Tetrachlorroethane	SW8260B-S	UG/KG	28 0	10 U	10 01	. O 61	15 U
100-41-4	Ethylbenzene	SW8260B-S	UG/KG	28 D	10 U	25	22 D	46
106-42-3	p-Xylene	SW8260B-S	UG/KG	400 D	6	120	110 D	120
95-47-6	o-Xylene	SW8260B-S	UG/KG	330 D	8	162	71 D	88
1330-20-7	Xylenes (total)		UG/KG	730 D	18	200	180 D	200
100-42-5	Styrene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
75-25-2	Bromoform	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U
98-82-8	Isopropylbenzene	SW8260B-S	UG/KG	35 D	2 7	16	14 DJ	26
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U
108-86-1	Bromobenzene	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U
96-18-4	1,2,3-Trichloropropane	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U
103-65-1	n-Propylbenzene	SW8260B-S	UG/KG	□ 98	3	45	40 D	110
95-49-8	2-Chlorotoluene	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U
108-67-8	1,3,5-Trimethyl Benzene	SW8260B-S	UG/KG	310 D	12	150	140 D	340
106-43-4	4-Chlorotoluene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
9-90-96	tert-butylbenzene	SW8260B-S	UG/KG	28 ∪	10 U	10 U	19 U	15 U
95-63-6	1,2,4-Trimethylbenzene		UG/KG	740 D	28	400 E	360 D	880 €
135-96-8	sec-butylbenzene	SW8260B-S	UG/KG	120 D	4	19	Q 29	230
9-84-6	Cymene	SW8260B-S	UG/KG	370 D	۲ ک	340	260 D	790 E
541-73-1	1,3-Dichlorobenzene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
106-46-7	1,4-Dichlorobenzene	SW8260B-S	UG/KG	28 0	10 0	10 U	19 U	15 U
104-51-8	n-Butylbenzene	SW8260B-S	UG/KG	330 D	12	260	190 D	200
95-50-1	1,2-Dichlorobenzene	SW8260B-S	UG/KG	28 U	10 □	7	11 DJ	11 7
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B-S	UG/KG	28 U	10 0	10 U	19 U	15 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B-S	UG/KG	28 U	10 □	10 U	19 U	15 U
87-68-3	Hexachlorobutadiene	SW8260B-S	UG/KG	28 U	10 U	10 U	19 U	15 U
91-20-3	Naphthalene	SW8260B-S	UG/KG	220 D	25	140	140 D	230
87-61-6	1,2,3-Trichlorobenzene	SW8260B-S	UG/KG	28 0	10 U	10 U	19 U	15 U

Notes:	Data Qualifiers:
B = Boring/Core sample	U - Compound was analyzed t
DL = Dilution	J - Estimated concentration
0 - 0	

 U - Compound was analyzed for but not detected (Undetected) 	J - Estimated concentration	B - Detected in associated blank sample	D - Compound is identified at a secondary dilution factor	E = Above calibration range
B = Boring/Core sample	DL = Dilution	G = Grab sample	SF = South Fork South Branch Chicago River	UG/KG = micrograms per kilogram

SF-2004-B08	Sediment	2004		10	10 O	10 O	10 U	10 0	10 0	10 0	1400 E	10 0	4	4	10 0	10 U	10	10 U	回 099	10	9	10	9 :	2 0	2 5	2 0	+	10 0	10 0	10 U	10 U	10	10 U	9	10	10	10 0	1010
SF-2004-B08	Sed	4/2/1												m																								
F-2004-B07DL SF-2004-B07	Sediment	7 004		<u>25</u> ∩	52 U	52 U	52 U	52 U	52 0	52 ∪	Q 099	52 ∪	11	24 DJB	52 U	52 U	52 ∪	52 U	320 D	<u>25</u> ∩	25	25	25	25 <u>C</u>	20 2	52.0	52 0	52 U	52 U	52 U	52 U	52 U	52 U	52 U	52 U	52 U	52 <u>U</u>	52 U
SF-2004-B07DL SF-2004-B07	Sediment	4/21																																				
		F		10	100	100	10 O	10 U	10 O	10 U	0	10 U	10	2	10 0	10 C	10 0	10 0	-	10 C	9 9 9) 			12	10 01	10 C	10 0	00		10 0	_	100	10	10 C	9 0 0
SF-2004-B07 SF-2004-B07	Sediment	1007/12/14		Ē	-	Ē	<u>-</u>	-	F	-	350	Ē	Ē		-	-	-	-	160	-	₹ .	← ·	-				+	Ē	Ē	_	_	_	-	-	-	_	~	_
90	±.			<u>></u>		09	0 9	0 9	0 9	0 9	~	0	0 9	2 JB	<u>0</u>	<u></u>	0 0	<u></u>	ري ري	<u>0</u>	<u>)</u>	<u> </u>	¬ :) : 9 %) =))		0 9	0	0 0	0	<u></u>	0 9	<u>0</u>	<u>0</u>	0	 <u>0</u> 9	
SF-2004-B06 SF-2004-B06	Sediment	4/2 1/200	·								42					_			*												_				· -	_	_	_
7 25	ate)			<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	므	⊃	2	36 DJB	84 0	84 0	84 0	84 0	790 D	84 ○	840	840	18 5	0 2	> =	2 4	<u> </u>	<u></u>	<u></u>	<u></u>	<u>₹</u>	<u>+</u>	<u>+</u>	3	<u></u>	84 C	84 U	<u>84</u> □
SF-2004-D05DI SF-2004-D05	Sed. (Duplicate)	1007/17/1		8	8	8	8	84	84	. 84	2100	84	29	36	8	8	8	8	790	8	80	2 0 5	₩ 7	84	100	9 8	84	84	84	84	84	84	84	28	84	8	8	8
oge S	Matrix Date:	Care:																									-											
Sample Code Location	Sample I			OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	UG/KG	0.6/KG	0 0 YK	00/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
	thod	200		ကု မ	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု	ဟု -	ဟု ၊	တှ (ကု (က္ (က် (က္ဖ	, v) ကု	ဟု	ဟု	ဟု	တ္	ဟု	က္	ဟု	ဟု	ဟု	ဟု ﴿	ဟု 🔻	ဟု
	Analytic M	2	9	SW8260B	SW8260B	SW8260B-S	SW8260B	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	3260B	SW8260B-S	SW8260B-S	3260B	SW8260B-S	SW8260B-S	3260B	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B	SW8260B-S	SW8260B	3260B	SW8260B-S	3260B	SW8260B-S	3260B	3260B
	le u A	2		SWS	ÑS.	SW.	SW.	8WS	3WS	SWS	SWS	SWS	SWS	SWS	SWS	ÑS.	SW.	ÑS.	ÑS.	ÑS.	SWS.	NS O	NS O	NS W	Ň	S S	SW	SW	3MS	SW.	SWS	SWS	SWS	SWS	SWS	SW.	SW	∝ ⊗
•				ane					ne						ene	jo.				<u>е</u>		Φ		m	4						ne	ene	o		bene	o)		
-	q	iption	•	ometh	Φ		ø		metha	ene			g Se	oride	oroeth	y Eth	Jane			oether	opane	ethan	=	ethane	bloride	Jane		ω	opane	ine	metha	oprope	nanon		oropro	ethan	opane	ene
	New	Descri		difluor	ethane	loride	ethane	hane	fluoro	oroeth		Jane	Jisulfic	e Chl	-Dich	art-But	oroeth	etate	Sue	ichlor	loropre	omon	E -	chioro	Petraci	oroeth		ethen	loropro	metha	chloro	ichlor	-2-per		3-Dich	chloro	loropr	proeth
	Chemical Name	(Group Description)	:	Dichlorodifluoromethane	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Acetone	lodomethane	Carbon Disulfide	Methylene Chloride	trans-1,2-Dichloroethene	Methyl tert-Butyl Ether	1,1-Dichloroethane	Vinyl Acetate	2-Butanone	cis-1,2-Dichloroethene	2,2-Dichloropropane	Chlorobromomethane	Chlorotorm	1,1,1-1 richioroethane	Carbon Tetrachloride	1,2-Dichloroethane	Benzene	Trichloroethene	1,2-Dichloropropane	Dibromomethane	Bromodichloromethane	cis-1,3-Dichloropropene	4-Methyl-2-pentanone	Toluene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane	1,3-Dichloropropane	Tetrachloroethene
	5	(Group Code)		. .	m ·	4	0	က	4	4	_	4	0	2	က္	4-4	ຕ່	4	ຕິ	7-7	<u>-</u> -	o o		0 22.8	2 6	2.5	2	9	5	ဗ	4	-01-5	7	-3	-05-6	2	ص م	4
	CAS Ru	ion	VOAs	75-71-8	74-87-3	75-01-4	74-83-9	75-00-3	75-69-4	75-35-4	67-64-1	74-88-4	75-15-0	75-09-2	156-60-5	1634-04-4	75-34-3	108-05-4	78-93-3	156-59-2 73 / 33 -	594-20-7 74-67-7	74-97-5	67-66-3	/1-55-6 26952-23-8	56-23-5	107-06-2	71-43-2	79-01-6	78-87-5	74-95-3	75-27-4	10061-01-5	108-10-1	108-88-3	10061-02-6	79-00-5	142-28-9	127-18-4

printed 7/14/2004 Page 6 of 14

Volatile Organic Compounds South Fork/South Branch Chicago River, April 20-22, 2004 Summary Table of Analytical Results

			Sample Code	SE-2004-D05D1	SE-2004-BOR	SE-2004-R07	SF-2004-R07DI	SE-2004-BOR
	***		Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B07	SF-2004-B08
	;		ple N	Sed. (Duplicate)	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
124-48-1	lane	SW8260B-S	UG/KG	0 48	∩9	10 U	52 U	10 U
106-93-4	1,2-Dibromoethane	SW8260B-S	UG/KG	84 <u>U</u>	<u>∩</u> 9	10 U	52 U	10 U
108-90-7	Chlorobenzene	SW8260B-S	UG/KG	84 0	<u> </u>	10 U	52 U	<u>г</u> 8
630-20-6	1,1,1,2-Tetrachlorroethane	SW8260B-S	UG/KG	84 0	∩ 9	10 U	52 U	10 U
100-41-4	Ethylbenzene	SW8260B-S	UG/KG	84 0	0 9	14	52 U	10 U
106-42-3	p-Xylene	SW8260B-S	UG/KG	42 DJ	∩ 9	180	33 DJ	02
95-47-6	o-Xylene	SW8260B-S	UG/KG	32 DJ	∩ 9	130	25 DJ	150
1330-20-7	Xylenes (total)	SW8260B-S	UG/KG	73 57	∩ 9	320	58 D	220
100-42-5	Styrene	SW8260B-S	UG/KG	84 U	∩ 9	10 U	52 U	10 U
75-25-2	Bromoform	SW8260B-S	UG/KG	84 0	0 9	10 U	52 U	10 U
98-82-8	Isopropyibenzene	SW8260B-S	UG/KG	17 DJ	<u>∩</u> 9	25	52 U	31
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B-S	UG/KG	84 0	∩ 9	10 U	52 U	10 U
108-86-1	Bromobenzene	SW8260B-S	UG/KG	84 U	∩ 9	10 U	52 U	10 U
96-18-4	1,2,3-Trichloropropane	SW8260B-S	UG/KG	84 0	∩ 9	10 U	52 U	10 U
103-65-1	n-Propylbenzene	SW8260B-S	UG/KG	23 0	∩ 9	28	52 U	74
95-49-8	2-Chlorotoluene	SW8260B-S	UG/KG	84 0	∩ 9	10 0	52 U	10 01
108-67-8	1,3,5-Trimethyl Benzene	SW8260B-S	UG/KG	79 07	<u>∩</u> 9	310	36 DJ	340
106-43-4	4-Chlorotoluene	SW8260B-S	UG/KG	84 0	09	10 U	52 U	10 01
9-90-96	tert-butylbenzene	SW8260B-S	UG/KG	84 0	∩9	10 U	52 U	10 U
95-63-6	1,2,4-Trimethylbenzene	SW8260B-S	UG/KG	220 D	09	3 069	Q 98	850 E
135-96-8	sec-butylbenzene	SW8260B-S	UG/KG	46 DJ	∩ 9	86	52 0	100
9-84-6	Cymene	SW8260B-S	UG/KG	170 D	<u>∩</u> 9	240	22 DJ	18
541-73-1	1,3-Dichlorobenzene	SW8260B-S	UG/KG	84 0	<u>∩</u> 9	10 U	52 U	10 U
106-46-7	1,4-Dichlorobenzene	SW8260B-S	UG/KG	84 0	<u>∩</u> 9	31	52 U	110
104-51-8	n-Butylbenzene	SW8260B-S	UG/KG	110 D	∩ 9	240	24 DJ	240
95-50-1	1,2-Dichlorobenzene	SW8260B-S	UG/KG	84 0	<u>0</u> 9	10 O	52 U	10 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B-S	UG/KG	84 0	∩ 9	10 01	52 U	10 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B-S	UG/KG	84 0	0.9	10 01	52 U	10 01
87-68-3	Hexachlorobutadiene	SW8260B-S	UG/KG	84 0	0 9	10 U	52 U	10 0
91-20-3	Naphthalene	SW8260B-S	UG/KG	83 0	∩ 9	02	52 0	22
87-61-6	1,2,3-Trichlorobenzene	SW8260B-S	UG/KG	84 U	0 9	10 0	52 U	10 U

	S
	Ò
•	≒
	\simeq

B = Boring/Core sample
DL = Dilution
G = Grab sample
SF = South Fork South Branch Chicago River
UG/KG = micrograms per kilogram

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
B - Detected in associated blank sample
D - Compound is identified at a secondary dilution factor
E = Above calibration range

			Sample Code	SF-2004-B08DL	SF-2004-B09	SF-2004-B09DL	SF-2004-B10	SF-2004-B10DL
	a.		Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)							
Voas	:							
75-71-8	Dichlorodifluoromethane	SW8260B-S	UG/KG	40 0		100	18 0	
74-87-3	Chloromethane	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 U
75-01-4	Vinyl Chloride	SW8260B-S	UG/KG	40 D	12 0	100 U	18 U	26 U
74-83-9	Bromomethane	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 U
75-00-3	Chloroethane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
75-69-4	Trichlorofluoromethane	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 U
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 0
67-64-1	Acetone	SW8260B-S	UG/KG	640 D	2400 E	2700 D	280	420 D
74-88-4	lodomethane	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 0
75-15-0	Carbon Disulfide	SW8260B-S	UG/KG	11 0	22	34 D	17 کا	1 2
75-09-2	Methylene Chloride	SW8260B-S	UG/KG	40 U	3	43 DJB	6.3	14 DJB
156-60-5	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	79 29 0
1634-04-4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
75-34-3	1,1-Dichloroethane	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 U
108-05-4	Vinyl Acetate	SW8260B-S	UG/KG	40 U	12 U	100	18 U	26 U
78-93-3	2-Butanone	SW8260B-S	UG/KG	40 ∪	1000 E	Q 089	300	180 D
156-59-2	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	40 C	12 U	100 U	18 U	26 0
594-20-7	2,2-Dichloropropane	SW8260B-S	UG/KG	40 U	12 U	1001	18 U	26 U
74-97-5	Chlorobromomethane	SW8260B-S	UG/KG	40 U	12 0	100 L	18 U	26 U
67-66-3	Chloroform	SW8260B-S	UG/KG	8	12 U	21 DJ	18 U	5 DJ
71-55-6	1,1,1-Trichloroethane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
26952-23-8	1,1-Dichloropropene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
56-23-5	Carbon Tetrachloride	SW8260B-S	UG/KG	40 C	12 0	100 U	18 U	26 U
107-06-2	1,2-Dichloroethane	SW8260B-S	UG/KG	40 0	12 U	100 U	18 U	26 U
71-43-2	Benzene	SW8260B-S	UG/KG	40 <u>U</u>	13	100 U	5	26 U
9-01-6	Trichloroethene	SW8260B-S	UG/KG	40 <u>C</u>		100 U	18 0	78 N
78-87-5	1,2-Dichloropropane	SW8260B-S	UG/KG	40 ∩		100 U	18 0	78 ∪
74-95-3	Dibromomethane	SW8260B-S	UG/KG	40 U		1000	18 0	26 U
75-27-4	Bromodichloromethane	SW8260B-S	UG/KG	40 U		100 L	18 0	26 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	40 U		100 L	18 0	26 U
108-10-1	4-Methyl-2-pentanone	SW8260B-S	UG/KG	40 U	12 U	100 L	18 0	26 U
108-88-3	Toluene	SW8260B-S	UG/KG	40 U	42	45 DJ	34	15 DJ
10061-02-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	40 U	12 0	100 □	18 U	79 0
2-00-62	1,1,2-Trichloroethane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
142-28-9	1,3-Dichloropropane	SW8260B-S	UG/KG	04	12 U	100 ∪	18	26 U
127-18-4	Tetrachloroethene	SW8260B-S	UG/KG	04	12 U	100	18	70 D
591-78-6	2-Hexanone	SW8260B-S	UG/KG	40 U	12 U	100 N	18 0	26 U

Summary Table of Analytical Results
Volatile Organic Compounds
South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B08DL	SF-2004-B09	SF-2004-B09DL	SF-2004-B10	SF-2004-B10DL
			Location	SF-2004-B08	SF-2004-B09	SF-2004-B09	SF-2004-B10	SF-2004-B10
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/22/2004	4/22/2004
124-48-1	Dibromochloromethane	SW8260B-S	UG/KG	40 D	12[U]	100 U	18 U	26 U
106-93-4	1,2-Dibromoethane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
108-90-7	Chlorobenzene	SW8260B-S	UG/KG	40 U	12 U	100 U	8	26 U
630-20-6	1,1,1,2-Tetrachlorroethane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 0
100-41-4	Ethylbenzene	SW8260B-S	UG/KG	40 U	23	100 U	61	19 0
106-42-3	p-Xylene	SW8260B-S	UG/KG	26 DJ	220	140 D	210	Q 99
95-47-6	o-Xylene	SW8260B-S	UG/KG	29 D	220	140 D	120	42 D
1330-20-7	Xylenes (total)	SW8260B-S	UG/KG	85 D	440	280 D	330	110 D
100-42-5	Styrene	SW8260B-S	UG/KG	40 0	12 U	100 U	18 U	26 U
75-25-2	Bromoform	SW8260B-S	UG/KG	40 ∪	12 U	100 U	18 U	26 U
98-82-8	Isopropylbenzene	SW8260B-S	UG/KG	6	51	27 DJ	25	7
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B-S	UG/KG	40 0	12 U	100 U	18 U	26 U
108-86-1	Bromobenzene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
96-18-4	1,2,3-Trichloropropane	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
103-65-1	n-Propylbenzene	SW8260B-S	UG/KG	15 DJ	100	38 D	63	14 DJ
95-49-8	2-Chlorotoluene	SW8260B-S	UG/KG	40 U	12 0	100 U	18 U	26 U
108-67-8	1,3,5-Trimethyl Benzene	SW8260B-S	UG/KG	85 D	200 E	200 D	260	61 D
106-43-4	4-Chlorotoluene	SW8260B-S	UG/KG	40 U	12 U	100 L	18 U	26 U
9-90-96	tert-butylbenzene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
95-63-6	1,2,4-Trimethylbenzene	SW8260B-S	UG/KG	190 D	1300 €	540 D	730 E	190 D
135-96-8	sec-butylbenzene	SW8260B-S	UG/KG	20 DJ	200	72 DJ	29	13 0
9-28-66	Cymene	SW8260B-S	UG/KG	40 U	400	140 D	460	110 D
541-73-1	1,3-Dichlorobenzene	SW8260B-S	UG/KG	40 U	12 U	100 0	18 U	26 U
106-46-7	1,4-Dichlorobenzene	SW8260B-S	UG/KG	39 DJ	12 U	100 U	200	Q 09
104-51-8	n-Butylbenzene	SW8260B-S	UG/KG	48 D	420	160 D	160	34 D
95-50-1	1,2-Dichlorobenzene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 0	26 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B-S	UG/KG	40 O	12.0	100 U	18 U	26 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
87-68-3	Hexachlorobutadiene	SW8260B-S	UG/KG	40 U	12 U	100 U	18 U	26 U
91-20-3	Naphthalene	SW8260B-S	UG/KG	28 DJ	130	71 0	029	290 D
87-61-6	1,2,3-Trichlorobenzene	SW8260B-S	UG/KG	40 U	12 U	100 0	18 U	26 U

Notes:

B = Boring/Core sample DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Data Qualifiers:
U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
B - Detected in associated blank sample
D - Compound is identified at a secondary dilution factor
E = Above calibration range

				,				
	-		Sample Code Location	SF-2004-B11	SF-2004-B11DL SF-2004-B11	SF-2004-B12 SF-2004-B12	SF-2004-B12DL SF-2004-B12	SF-2004-B13 SF-2004-B13
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)							
75-71-8	Dichlorodifluoromethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 0	0.0
74-87-3	Chloromethane	SW8260B-S	UG/KG	14 U	27 U		120 U	
75-01-4	Vinyl Chloride	SW8260B-S	UG/KG	14 U	27 U	19 U	120 0	0 9
74-83-9	Bromomethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
75-00-3	Chloroethane	SW8260B-S	UG/KG	14 U	27 U	19 U	126 U	N 9
75-69-4	Trichlorofluoromethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	Π9
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	∩ 9
67-64-1	Acetone	SW8260B-S	UG/KG	770 E	610 D	1500 E	720 D	27
74-88-4	lodomethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	∩ 9
75-15-0	Carbon Disulfide	SW8260B-S	UG/KG	18	10 DJ	29	120 U	0 9
75-09-2	Methylene Chloride	SW8260B-S	UG/KG	14 U	27 U	19 U	63 DJB	0 9
156-60-5	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	<u>∩</u> 9
1634-04-4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	∩ 9
75-34-3	1,1-Dichloroethane	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	N 9
108-05-4	Vinyl Acetate	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	N 9
78-93-3	2-Butanone	SW8260B-S	UG/KG	390	250 D	860 E	350 D	0 9
156-59-2	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
594-20-7	2,2-Dichloropropane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
74-97-5	Chlorobromomethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
67-66-3	Chloroform	SW8260B-S	UG/KG	14 U	9 0	19 U	26 DJ	2 J
71-55-6	1,1,1-Trichloroethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	O 9
26952-23-8	1,1-Dichloropropene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 0	<u>n</u> 9
56-23-5	Carbon Tetrachloride	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
107-06-2	1,2-Dichloroethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
71-43-2	Benzene	SW8260B-S	UG/KG	4	27 U	11	120 U	N 9
9-01-6	Trichloroethene	SW8260B-S	UG/KG	14 U	27 U	9	120 U	<u>0</u> 9
2-28-82	1,2-Dichloropropane	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	<u>0</u> 9
74-95-3	Dibromomethane	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	<u>N</u> 9
75-27-4	Bromodichloromethane	SW8260B-S	UG/KG	14 0	27 U	19 0	120 U	<u>n</u> 9
10061-01-5	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	14 U	27 0	19 0	120 U	∩ 9
108-10-1	4-Methyl-2-pentanone	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	Π9
108-88-3	Toluene	SW8260B-S	UG/KG	28	17 🖸	230	100 DJ	N 9
10061-02-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	Π9
2-00-62	1,1,2-Trichloroethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
142-28-9	1,3-Dichloropropane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
127-18-4	Tetrachloroethene	SW8260B-S	UG/KG	14 0	27 ∪	19 0	120 0	<u>0</u> 9
591-78-6	2-Hexanone	SW8260B-S	UG/KG	14 U	27 U	19 0	12010	9

				71.7. T.Y	SE-2004-R11D	SE.2004-R12	SE-2004-R12DI	SE-2004-R13
			Location	SF-2004-B11	SF-2004-B11	SF-2004-B12	SF-2004-B12	SF-2004-B13
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn (Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004	4/22/2004
	Dibromochloromethane	SW8260B-S	UG/KG	14 U	27 U	U 61	120 U	Π9
106-93-4	1,2-Dibromoethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
108-90-7	Chlorobenzene	SW8260B-S	UG/KG	9	27 U	19 U	120 U	16
9-02-09	1,1,1,2-Tetrachlorroethane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
100-41-4	Ethylbenzene	SW8260B-S	UG/KG	36	21 0	87	120 U	0 9
106-42-3	p-Xylene	SW8260B-S	UG/KG	180	□ 86 □	530	140 D	1
95-47-6	o-Xylene	SW8260B-S	UG/KG	100	28 D	280	78 DJ	3 7
1330-20-7	Xylenes (total)	SW8260B-S	UG/KG	280	160 D	810	220 D	4
100-42-5	Styrene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
75-25-2	Bromoform	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	N 9
98-85-8	Isopropylbenzene	SW8260B-S	UG/KG	21	11 0	64	120 U	0 9
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	0 9
_	Bromobenzene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	09
96-18-4	1,2,3-Trichloropropane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	9
103-65-1	n-Propylbenzene	SW8260B-S	UG/KG	51	21 0	190	26 DJ	09
95-49-8	2-Chlorotoluene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	2 2
108-67-8	1,3,5-Trimethyl Benzene	SW8260B-S	UG/KG	280	120 D	170	120 DJ	7
106-43-4	4-Chlorotoluene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
9-90-96	tert-butylbenzene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
95-63-6	1,2,4-Trimethylbenzene	SW8260B-S	UG/KG	720 E	340 D	2000 E	350 D	12
œ	sec-butylbenzene	SW8260B-S	UG/KG	72	28 D	240	120 U	0 9
9-28-66	Cymene	SW8260B-S	UG/KG	240	□ 66	820 E	110 01	0 9
541-73-1	1,3-Dichlorobenzene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9
106-46-7	1,4-Dichlorobenzene	SW8260B-S	UG/KG	84	40 D	130	29 DJ	17
104-51-8	n-Butylbenzene	SW8260B-S	UG/KG	180	G 69	620	88 DJ	3
95-50-1	1,2-Dichlorobenzene	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	3
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	9
120-82-1	1,2,4-Trichlorobenzene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	<u>0</u> 9
87-68-3	Hexachlorobutadiene	SW8260B-S	UG/KG	14 U	27 U	19 0	120 U	<u>0</u> 9
91-20-3	Naphthalene	SW8260B-S	UG/KG	620 E	310 D	290	160 D	<u>Р</u>
87-61-6	1,2,3-Trichlorobenzene	SW8260B-S	UG/KG	14 U	27 U	19 U	120 U	0 9

Data Qualifiers:	U - Compound was analyzed for but not detected (Undetected)	J - Estimated concentration	
Notes:	B = Boring/Core sample	DL = Dilution	0 - 0t

G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

B - Detected in associated blank sample
 D - Compound is identified at a secondary dilution factor
 E = Above calibration range

			Sample Code	SF-2004-G01	SF-2004-G02 SF-2004-G02	SF-2004-G02DL SF-2004-G02	SF-2004-G03
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		4/20/04	4/20/04	4/20/04	4/21/2004
(Group Code)	(Group Description)						
75-71-8	Dichlorodifluoromethane	SW8260B-S	UG/KG	∩ 6	12 U	610 U	8
74-87-3	Chloromethane	SW8260B-S	UG/KG	∩ 6	12 U	610 U	
75-01-4	Vinyl Chloride	SW8260B-S	UG/KG	∩ 6	12 0	610 U	08
74-83-9	Bromomethane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	
75-00-3	Chloroethane	SW8260B-S	UG/KG	<u>∩</u> 6	12 0	610 0	∩ 8
75-69-4	Trichlorofluoromethane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	∞ ∞
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 U	
67-64-1	Acetone	SW8260B-S	UG/KG	49	67	610 0	8
74-88-4	lodomethane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	⊃ 8
75-15-0	Carbon Disulfide	SW8260B-S	UG/KG	∩ 6	12 U	610 0	⊃ 8
75-09-2	Methylene Chloride	SW8260B-S	UG/KG	<u>∩</u> 6	6	610 0	3 JB
156-60-5	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	⊃	12 U	610 0	<u>∩</u> 8
1634-04-4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	<u></u>	12 U	610 0	08
75-34-3	1,1-Dichloroethane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	08
108-05-4	Vinyl Acetate	SW8260B-S	UG/KG	∩ 6	12 U	610 0	∞
78-93-3	2-Butanone	SW8260B-S	UG/KG	19	12 U	390 DJ	⊃ 8
156-59-2	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	∩ 6	12 U	610 U	∞
594-20-7	2,2-Dichloropropane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	⊃ 8
74-97-5	Chlorobromomethane	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 0	8
67-66-3	Chloroform	SW8260B-S	UG/KG	∩ 6	12 U	610 U	2
71-55-6	1,1,1-Trichloroethane	SW8260B-S	UG/KG	∩ 6	12 U	610 0	0 8
26952-23-8	1,1-Dichloropropene	SW8260B-S	UG/KG	∩ 6	12 U	610 0	⊃ 8
56-23-5	Carbon Tetrachloride	SW8260B-S	UG/KG	∩ 6	12 U	610 U	⊃ 8
107-06-2	1,2-Dichloroethane	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 0	∩ 8
71-43-2	Benzene	SW8260B-S	UG/KG	<u>∩</u> 6	12 0	610 U	0.8
79-01-6	Trichloroethene	SW8260B-S	UG/KG	<u>∩</u>	12 U	610 U	0 8
78-87-5	1,2-Dichloropropane	SW8260B-S	UG/KG	∩ 6	12 U	610 U	
74-95-3	Dibromomethane	SW8260B-S	UG/KG	∩ 6	12 U	610 U	⊃ 8
75-27-4	Bromodichloromethane	SW8260B-S	UG/KG	∩ 6	12 U	610 U	0 8
10061-01-5	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	∩ 6	12 U	610 U	8
108-10-1	4-Methyl-2-pentanone	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 U	0 8
108-88-3	Toluene	SW8260B-S	UG/KG	7	2100 E	0008	17
10061-02-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 U	⊃ 8
2-00-62	1,1,2-Trichloroethane	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 U	08
142-28-9	1,3-Dichloropropane	SW8260B-S	UG/KG	∩ 6	12 0	610 U	⊃ 8
127-18-4	Tetrachloroethene	SW8260B-S	UG/KG	<u>∩</u> 6	12 U	610 U	0 8
591-78-6	2-Hexanone	SW8260B-S	UG/KG	nl6	12 U	610 U	8 0

Summary Table of Analytical Results Volatile Organic Compounds

04
2
1 20-22, 200
≍ ≕
Αp
River,
Chicago River,
Branch (
돩
Fork/Sout
ᇟ
South F
٠

						•																											
SF-2004-G03 SF-2004-G03	Sediment	4/21/2004	0 8	08	0 8	0 8	08	0 8	0 8	0 8	0 8	∩ 8	0 8	0 8	0 8	0 8	0 8	0 8	0 8	0 8	0 8	0.8	08	2 7	0 8	∞	∩ 8	0 8	0 8	0 8	<u>8</u>	3	8 0
SF-2004-G02DL SF-2004-G02	Sediment	4/20/04	610 U	610 U	610 U	610 U	610 U	610 0	610 U	610 U	610 U	610 U	610 U	610 U	610 U	610 U	610 U	610 U	610 U	610 0	610 U	610 0	610 U	350 DJ	610 0	610 U	610 U	610 0	610 U	610 U	610 0	010 U	610 U
SF-2004-G02 SF-2004-G02	Sediment	4/20/04	12 U	12 0	5	12 U	12 0	12 U	12 0	12 U	12 0	12 U	12 U	12 U	12 0	12 U	12 U	12 U	11	12 U	12 U	22	12 U	140	12 U	15	12 U	12 U	12 U	12 U	12 U	34	12 U
SF-2004-G01 SF-2004-G01	Sediment	4/20/04	<u> </u>	<u>∩</u> 6	2)	<u>∩</u> 6	<u> </u>	<u>∩</u> 6	∩ 6	∩ 6	<u>∩</u> 6	0	0	<u>∩</u> 6	<u>∩</u> 6	<u>∩</u> 6	<u>∩</u> 6	ე 6	4	∩ 6	∩ 6	6	<u>∩</u> 6	4 U	<u>∩</u> 6	<u>∩</u> 6	3	<u>∩</u> 6	<u>∩</u> 6	<u>∩</u> 6	<u>∩</u> 6	19	90
Sample Code Location	Sample Matrix	Unit Date:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
		Analytic Method	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S
*		Chemical Name	Dibromochloromethane	1,2-Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachlorroethane	Ethylbenzene	p-Xylene	o-Xylene	Xylenes (total)	Styrene	Bromoform	Isopropylbenzene	1,1,2,2-Tetrachloroethane	Bromobenzene	1,2,3-Trichloropropane	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethyl Benzene	4-Chlorotoluene	tert-butylbenzene	1,2,4-Trimethylbenzene	sec-butylbenzene	Cymene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	1,2,3-Trichlorobenzene
		CAS Rn	124-48-1	106-93-4	108-90-7	630-20-6	100-41-4	106-42-3	95-47-6	1330-20-7	100-42-5	75-25-2	98-82-8	79-34-5	108-86-1	96-18-4	103-65-1	95-49-8	108-67-8	106-43-4	9-90-96	95-63-6	135-96-8	9-84-66	541-73-1	106-46-7	104-51-8	95-50-1	96-12-8	120-82-1	87-68-3	91-20-3	87-61-6

2	0	D
7	2	2
1	۶	Ξ
í	ä	7

B = Boring/Core san DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

U - Compound was analyzed for but not detected (Undetected) J - Estimated concentration

Data Qualifiers:

B - Detected in associated blank sample
 D - Compound is identified at a secondary dilution factor
 E = Above calibration range

		•		2000	בסמיין פווגססמיין בומוטן פווימשא ואינון טאווו בס בבן בססו	
			Sample Code	SF-2004-G04	SF-2004-G04DL SF-2004-G04	SF-2004-G05 SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/22/2004
(Group Code) VOAs	(Group Description)					
75-71-8	Dichlorodifluoromethane	SW8260B-S	UG/KG	09	13 U	9
74-87-3	Chloromethane	SW8260B-S	UG/KG	0 9	13 U	0 9
75-01-4	Vinyl Chloride	SW8260B-S	UG/KG	0 9	13 U	0 9
74-83-9	Bromomethane	SW8260B-S	UG/KG	0 9	13 U	0 9
75-00-3	Chloroethane	SW8260B-S	UG/KG	0 9	13 U	0 9
75-69-4	Trichlorofluoromethane	SW8260B-S	UG/KG	0 9	13 U	0 9
75-35-4	1,1-Dichloroethene	SW8260B-S	UG/KG	0 9	13 U	0 9
67-64-1	Acetone	SW8260B-S	UG/KG	30	49 D	13
74-88-4	lodomethane	SW8260B-S	UG/KG	0 9	13 0	9
75-15-0	Carbon Disulfide	SW8260B-S	UG/KG	9	13 0	9
75-09-2	Methylene Chloride	SW8260B-S	UG/KG	3 7		3 JB
156-60-5	trans-1,2-Dichloroethene	SW8260B-S	UG/KG	0 9	13 0	<u>∩</u> 9
1634-04-4	Methyl tert-Butyl Ether	SW8260B-S	UG/KG	∩ 9	13 U	<u>∩</u> 9
75-34-3	1,1-Dichloroethane	SW8260B-S	UG/KG	0 9	13 0	9
108-05-4	Vinyl Acetate	SW8260B-S	UG/KG	∩ 9	13 0	9
78-93-3	2-Butanone	SW8260B-S	UG/KG	N 9	13 U	9
156-59-2	cis-1,2-Dichloroethene	SW8260B-S	UG/KG	0 9	13 0	∩ 9
594-20-7	2,2-Dichloropropane	SW8260B-S	UG/KG	∩ 9	13 0	0 9
74-97-5	Chlorobromomethane	SW8260B-S	UG/KG		13 U	0 9
67-66-3	Chloroform	SW8260B-S	UG/KG	0 9	13 U	<u></u>
71-55-6	1,1,1-Trichloroethane	SW8260B-S	UG/KG	0 9	13 U	∩ 9
26952-23-8	1,1-Dichloropropene	SW8260B-S	UG/KG	0 9		<u>∩</u> 9
56-23-5	Carbon Tetrachloride	SW8260B-S	UG/KG	0 9	13 0	<u>∩</u> 9
107-06-2	1,2-Dichloroethane	SW8260B-S	UG/KG	0 9		<u>∩</u> 9
71-43-2	Benzene	SW8260B-S	UG/KG	<u>∩</u> 9		<u>∩</u> 9
9-01-6	Trichloroethene	SW8260B-S	UG/KG			<u>∩</u> 9
78-87-5	1,2-Dichloropropane	SW8260B-S	UG/KG		13 0	<u>∩</u> 9
74-95-3	Dibromomethane	SW8260B-S	UG/KG	<u>∩</u> 9	13 0	<u>∩</u> 9
75-27-4	Bromodichloromethane	SW8260B-S	UG/KG		13 0	
10061-01-5	cis-1,3-Dichloropropene	SW8260B-S	UG/KG	∩ 9	13 U	0 9
108-10-1	4-Methyl-2-pentanone	SW8260B-S	UG/KG	<u>0</u> 9	13 0	0 9
108-88-3	Toluene	SW8260B-S	UG/KG	290 E	260 D	0 9
10061-02-6	trans-1,3-Dichloropropene	SW8260B-S	UG/KG	N 9	13 U	0 9
2-00-62	1,1,2-Trichloroethane	SW8260B-S	UG/KG	0 9	13 U	<u>0</u> 9
142-28-9	1,3-Dichloropropane	SW8260B-S	UG/KG	∩ 9	13 U	9
127-18-4	Tetrachloroethene	SW8260B-S	UG/KG	0 9	13 U	<u>0</u> 9
591-78-6	2-Hexanone	SW8260B-S	UG/KG	9	13 U	0 9

Summary Table of Analytical Results Volatile Organic Compounds

South Fork/South Branch Chicago River, April 20-22, 2004

										_																				_			
105	+_	. 4	0 9	0 9	3	0	0	0	0	0	0	0 9	0	0	0	9	0	0 9	0	0	0	ر	9	9	9	<u>4</u>	0 9	0	0	0 9	0	3	6 U
SF-2004-G05 SF-2004-G05	Sediment	4/22/2004		_		_	_		_	_	_	_	_	_	_	_	_	_	_	_				_			_	_	_	_			
SF-2004-G04DL SF-2004-G04	Sediment	4/21/2004	13 U	13 U	5 07	13 0	13 U	13 0	13 0	13 0	13 0	13 0	13 0	13 0	13 U	13 0	13 U	13 0	13 0	13 0	13 0	4 DJ	13 0	16 D	13 0	10 01	13 0	13 0	13 0	13 0	13 U	6	13 U
4 4			2	_	7	0	_	_	_	_	_	_	_	_	_	<u>∩</u>	0	0	7	_	⊃	7	0		0	_	0	0	<u></u>	_	_	_	n
SF-2004-G04 SF-2004-G04	Sediment	•	9	9	3	9	9	9	9	9	9	9	9	9	9	9	9	9	2	9	9	3	9	10	9	9		9	9	9	9	9	9
əpc	atrix	Date:																															
Sample Code Location	Sample Matrix	П	ŋ	g	g	g	ტ	g	g	g	Ŋ	g	g	g	g	g	Ŋ	ტ	Ŋ	ŋ	Ŋ	Ŋ	ტ	ტ	ტ	ტ	ტ	ტ	ტ	ტ	ტ	ტ	ტ
Sample Location	Sam	_	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
		Analytic Method	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S	SW8260B-S
		Chemical Name	Dibromochloromethane	1,2-Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachlorroethane	Ethylbenzene	p-Xylene	o-Xylene	Xylenes (total)	Styrene	Bromoform	Isopropylbenzene	1,1,2,2-Tetrachloroethane	Bromobenzene	1,2,3-Trichloropropane	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethyl Benzene	4-Chlorotoluene	tert-butylbenzene	1,2,4-Trimethylbenzene	sec-butylbenzene	Cymene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	1,2,3-Trichlorobenzene
		CAS Rn	124-48-1	106-93-4	108-90-7	630-20-6	100-41-4	106-42-3	95-47-6	1330-20-7	100-42-5	75-25-2	98-82-8	79-34-5	108-86-1	96-18-4	103-65-1	95-49-8	108-67-8	106-43-4	9-90-96	92-63-6	135-96-8	9-28-66	541-73-1	106-46-7	104-51-8	95-50-1	96-12-8	120-82-1	87-68-3	91-20-3	87-61-6

B = Boring/Core sample DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

J - Estimated concentration

U - Compound was analyzed for but not detected (Undetected)

Data Qualifiers:

B - Detected in associated blank sample
D - Compound is identified at a secondary dilution factor
E = Above calibration range

printed 7/14/2004 Page 1 of 12

Summary Table of Analytical Data Semi-Volatile Organic Compounds

2004
April 20-22, 200
o River, A
Chicago
Branch (
Fork/South
South

			Sample Code	SF-2004-B01A	SE-2004-B02	SE-2004-B02DL	SE-2004-B03	SE-2004-R04
			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B02	SF-2004-B03	SF-2004-B04
			ble 1	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/20/2004	4/21/2004
(Group Code) SVOCs/BNAs	(Group Description)							
108-95-2	Phenol	SW8270C-S	UG/KG	3600 U	110 J	4600 U	3800 U	3200 U
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG	3600 U	910 U	4600 U		3200 U
92-21-8	2-Chlorophenol	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 0	3200 U
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 U	3200 U
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	3600 U	1800	1400 DJ	3800 U	3200 U
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	3600 U	130 J	4600 U	3800 U	3200 U
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 U	3200 U
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 U	3200 U
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	3600 U	1700	1200 DJ	3800 0	3200 U
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	3600 U	910 ∪	4600 U	3800 U	3200 0
67-72-1	Hexachloroethane	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 U	3200 U
98-95-3	Nitrobenzene	SW8270C-S	UG/KG	3600 U	910 U	4600 U		3200 U
78-59-1	Isoph o rone	SW8270C-S	UG/KG	3600 U	910 U	4600 U		3200 U
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800	3200 U
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG	3600 U	910 U	4600 U		3200 U
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800	3200 U
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800 0	3200 U
91-20-3	Naphthalene	SW8270C-S	UG/KG	4400	2600	2000 DJ	r 096	920 J
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG		1900	4600 U		
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG	3600 U	910 ∩	4600 U	3800 U	
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG	3600 U	910 0			
29-20-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	3600 U	910 ∪	4600 U	3800 U	3200 U
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	3600	1500	1100		
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	3600 U	910 0		3800 U	
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	OG/KG	3600 U	910 0	4600 U		3200 0
95-95-4	2,4,5-1 richlorophenol	SW82/0C-S	OG/KG		1800 U	9300 0		
91-58-7	2-Chloronaphthalene	SW8270C-S	08/KG		910 0	4600 U		
88-74-4	Z-Nitroaniline	SW8270C-S	UG/KG		1800 0	9300 0		
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG	3600 U	910 U	4600 U		
208-96-8	Acenaphthylene	SW8270C-S	UG/KG	2700 J	490 7	4600 U		
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG	3600 U	910 U	4600 U	3800	3200 U
99-09-2	3-Nitroaniline	SW8270C-S	UG/KG	7200 U	1800 U	D 0086	U 0077	6400 U
83-32-9	Acenaphthene	SW8270C-S	UG/KG	2800 J	3700	3000	3800	3200 U
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	7200 U	1800 U	D 0026	U 0077	6400 U
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	7200 U	1800 U	O 0086		6400 U
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	1200 J	2100	1700 DJ	1300 J	1900]
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	3600 U	910 0	4600 j U	380010	3200 U

Semi-Volatile Organic Compounds Summary Table of Analytical Data

South Fork/South Branch Chicago River, April 20-22, 2004

Sample Code SF-2004-B01A
Location
Sample
SW8270C-S LIG/KG
_
SW8270C-S UG/KG
SW8270C-S UG/KG
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG

Notes:

B = Boring/Core sample

DL = Dilution
G = Grab sample
SF = South Fork South Branch Chicago River
UG/KG = micrograms per kilogram

Data Qualifiers:
U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

			Sample Code	SF-2004-B05	SF-2004-D05	SF-2004-B06	SF-2004-B07
			Location	SF-2004-B05	SF-2004-D05	SF-2004-B06	SF-2004-B07
			Sample Matrix	Sediment	Sed. (Duplicate)	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	(Group Description)						
108-95-2	Phenol	SW8270C-S	UG/KG	3300	2000 0	4200 U	5500 U
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG	3300 0	5000 U		
95-57-8	2-Chlorophenol	SW8270C-S	UG/KG	3300 U			
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	3300 U			
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	360	840 J	1000	5500 U
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	3300 U	2000 ח	550 J	5500 U
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	3300 U	2000 ח	4200 U	5500 U
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	3300 U	2000 0	4200 U	5500 U
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	3300 0	870 J	620 J	2500 U
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	3300 ח	2000 N	4200 U	2200 U
67-72-1	Hexachloroethane	SW8270C-S	UG/KG				
98-95-3	Nitrobenzene	SW8270C-S	UG/KG			4200 N	
78-59-1	Isophorone	SW8270C-S	UG/KG			4200 U	
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG				2200 U
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG		2000 N	4200 U	2200 U
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG		2000 U	4200 U	
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	3300 0	2000 n	4200 N	
91-20-3	Naphthalene	SW8270C-S	UG/KG		4000 ك		
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG	3300 0	2000 n	4200 U	2200 U
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG	3300 0	2000 □	4200 U	5500 U
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG				
29-50-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	3300 0	2000 N	4200 N	2500 U
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	0086	18000	2100	2200 U
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	3300 П			
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	UG/KG	3300 ח			
95-95-4	2,4,5-Trichlorophenol	SW8270C-S	UG/KG			0098	
91-58-7	2-Chloronaphthalene	SW8270C-S	UG/KG		2000 U	4200 N	
88-74-4	2-Nitroaniline	SW8270C-S	UG/KG		10000 U	D 0098	11000 0
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG		2000 ח	4200 U	2200 U
208-96-8	Acenaphthylene	SW8270C-S	UG/KG		2000 U	4200 U	2200 U
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG		2000 N	4200 N	2500 U
99-09-2	3-Nitroaniline	SW8270C-S	UG/KG		10000 U	D 0098	11000 U
83-32-9	Acenaphthene	SW8270C-S	UG/KG	3300 U	2000 0	4200 N	1400 ك
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	0089	10000 U	N 0098	11000 U
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	0089	10000	0 0098	11000 U
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	3300 ח	3600 J	1100 7	2200 U
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	3300 U	2000 U	4200 U	5500 U

Semi-Volatile Organic Compounds Summary Table of Analytical Data

	2004
	20-22
-	Anri
	Ziver.
	Chicago
	Branch
	South Fork/South Branch Chicago River April 20-22
	Solith F

Sample Code SF-2004-B05 Location SF-2004-B05 Sample Matrix Sediment SAM03700 COM	Sample Code SF-2004-B05 Location SF-2004-B05 Sample Matrix Sediment hod Unit Date: 4/21/2004	SF-2004-B05 SF-2004-B05 Sediment 4/21/2004		SF-2004-E SF-2004-E Sed. (Duplic 4/21/200	005 005 cate)	SF-2004-B06 SF-2004-B06 Sediment 4/21/2004	SF-2004-B07 SF-2004-B07 Sediment 4/21/2004
Diethylphthalate SW8270C-S UG/KG 3300 L 4-Chlorophenyl-phenylether SW8270C-S UG/KG 3300 L	UG/KG UG/KG		33001	$\overline{}$	2000 C	4200 U 4200 U	5500 U 5500 U
SW8270C-S	UG/KG		2700	~	4300 J	1600 J	1500 J
SW8270C-S UG/KG	UG/KG		0089	\supset	10000 U	0098	11000 U
thylphenol SW8270C-S UG/KG	UG/KG		0089	⊇	10000	0098	11000 U
ylamine SW8270C-S UG/KG	UG/KG		330(<u> </u>	2000 U	4200 U	2200 U
nylether SW8270C-S UG/KG	UG/KG		330	<u></u>	2000 U	4200 U	2200 U
UG/KG	UG/KG		33	3300 0	2000	4200 U	2200 U
SW8270C-S UG/KG	UG/KG		39	0089	10000 U	0098	11000 U
SW8270C-S UG/KG 1	UG/KG	_	170	2000	27000	10000	20000
	UG/KG		Ö	2500 J	4200 ك	1700 7	9400
SW8270C-S UG/KG	UG/KG		(*)	3300 U	2000 U	780 J	2200 U
lalate SW8270C-S UG/KG	UG/KG		,	3300 ∪	2000 U	4200 U	2500 U
SW8270C-S UG/KG	UG/KG		÷	14000	23000	13000	46000
SW8270C-S UG/KG	ng/Kg		_	12000	16000	7500	41000
Butylbenzylphthalate SW8270C-S UG/KG		UG/KG		3300 U	2000 ח	4200 U	2500 U
SW8270C-S		UG/KG		3300 U	2000 ח	4200 U	2200 U
Inthracene SW8270C-S UG/KG	UG/KG			5200	8100	4100 ك	16000
SW8270C-S UG/KG	UG/KG		_	0000	17000	2006	22000
thalate SW8270C-S UG/KG 1	UG/KG	_	_	12000	18000	41000	2500 U
	UG/KG			3300 U	2000 N	510 J	2200 U
hene SW8270C-S UG/KG	UG/KG		•	0069	11000	2800	9300
Benzo(k)fluoranthene SW8270C-S UG/KG 2	UG/KG		(7	2600 J	4000	2400)	3900 ח
SW8270C-S UG/KG	UG/KG		7	4400	7300	7 006E	0069
pyrene SW8270C-S UG/KG	UG/KG		•	2200 J	7 006E	2200 J	3000
Dibenz(a,h)anthracene SW8270C-S UG/KG	_	UG/KG		740	1200 J	4200 U	2500 U
Benzo(g,h,i)perylene SW8270C-S UG/KG		UG/KG		2600 J	4400)	2600 J	3200 J

Notes:

B = Boring/Core sample
DL = Dilution
G = Grab sample
SF = South Fork South Branch Chicago River
UG/KG = micrograms per kilogram

Data Qualifiers:
U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

			Sample Code	SE_2004_B08	OF 2004 BOO	OE 2004 B40	SE 2004 B44
			Location	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)						
108-95-2	Phenol	SW8270C-S	UG/KG	3400 U	4000 U	5600 U	560 U
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG	3400 U			
95-57-8	2-Chlorophenol	SW8270C-S	UG/KG	3400 U	4000 U		
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	3400 U	4000 U	5600 U	
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	1100 J	680	2600 J	2800
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	3400 U	4000 U	5600 U	260 U
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	3400 U	4000 U	640)	260 U
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
67-72-1	Hexachloroethane	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
98-95-3	Nitrobenzene	SW8270C-S	UG/KG		4000 U	2600 U	260 U
78-59-1	Isophorone	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG	3400 0	4000 U	2600 U	260 U
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
91-20-3	Naphthalene	SW8270C-S	UG/KG	1600 J	2100 7	2800	10000 巨
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG		4000 U	2600 U	260 U
29-20-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	2000	17000	11000	8200
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	UG/KG		4000 U	2600 U	260 U
95-95-4	2,4,5-Trichlorophenol	SW8270C-S	UG/KG		8100 U	11000 U	1100 U
91-58-7	2-Chloronaphthalene	SW8270C-S	UG/KG		4000 U	2600 U	260 U
88-74-4	2-Nitroaniline	SW8270C-S	UG/KG	7000 U	8100 U	11000 U	1100 U
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U
208-96-8	Acenaphthylene	SW8270C-S	UG/KG		4000 U	2600 U	260 U
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG		4000 U	2600 U	260 U
99-09-2	3-Nitroaniline	SW8270C-S	UG/KG	O007	8100 U	11000 U	1100 U
83-32-9	Acenaphthene	SW8270C-S	UG/KG	3400 U	4000 U	4400)	8900
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	O 0007	8100 U	11000 U	1100 U
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	∩ 000Z	8100 U	11000 U	1100 U
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	3400 U	3200 7	2700 J	2800
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	3400 U	4000 U	2600 U	260 U

Semi-Volatile Organic Compounds Summary Table of Analytical Data

outh Fork/South Branch Chicago River. April 20-22, 2004		
ork/South Branch Chicago River. April 20-22.		
ork/South Branch Chicago River. April 20-22.	4	
ork/South Branch Chicago River. April 20-22.	\subseteq	
ork/South Branch Chicago River. April 20-22.	\subseteq	
ork/South Branch Chicago River, April 20-	~	Į
ork/South Branch Chicago River, April 20-	_	
ork/South Branch Chicago River, April 20-	5	į
ork/South Branch Chicago River. April		ı
ork/South Branch Chicago River. April	خ	3
ork/South Branch Chicago River. April	⊼	į
ork/South Branch Chicago River. A	_	
ork/South Branch Chicago River. A	.E	
ork/South Branch Chicago River.	_	1
ork/South Branch Chicago Riv	⋖	
ork/South Branch Chicago Riv		•
ork/South Branch Chicago Riv	_	
ork/South Branch Chicago Riv	ā	,
ork/South Branch Chicago	.≥	
ork/South Branch Chicago	n	•
ork/South	_	
ork/South	_	
ork/South	⊆)
ork/South	ď	•
ork/South	.⊆	,
ork/South	2	
ork/South	\mathbf{c}	١
ork/South	Ξ	
ork/South	÷	
ork/South	>	
ork/South	<u> </u>	
ork/South	2)
ork/South	m	١
outh Fork/South	_	
outh Fork/Sout	£	;
outh Fork/So	Ξ	i
outh Fork/So	~	5
outh Fork/8	ĭĭ	١
outh Fork	Υ.	
outh For	¥	
outh Fc	7	5
outh F	ı۲	
outh	_	
ă	_	
ಠ	=	į
	7	í
m	ĭř	١
٠,	٠,	•

Location
Sample Matrix
Analytic Method Unit
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG
SW8270C-S UG/KG

Notes:

B = Boring/Core sample

DL = Dilution

G = Grab sample

SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

				,			
			Sample Code	SF-2004-B11DL	SF-2004-B12	SF-2004-B12DL	SF-2004-B13
			Location Sample Matrix	SF-2004-B11	SF-2004-B12	SF-2004-B12	SF-2004-B13
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)						
108-95-2	Phenol	SW8270C-S	UG/KG	5600	800	3200	420 [1]
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG	2600 U	0008	3200 0	420 U
95-57-8	2-Chlorophenol	SW8270C-S	UG/KG	2600 U		3200 U	420 U
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	2300 DJ	550 J	3200 U	1600
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	2600 ∪	230 J	3200 0	350 J
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 U
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	2600 U	008 0	3200 0	420 U
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	2600 U	008 0	3200 ∪	250 J
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 U
67-72-1	Hexachloroethane	SW8270C-S	UG/KG	2600 U	008	3200 U	420 N
98-95-3	Nitrobenzene	SW8270C-S	UG/KG	2600 U	008	3200 U	420 N
78-59-1	Isophorone	SW8270C-S	UG/KG	2600 U	∩ 008	3200 U	420 N
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG	2600 U	∩ 008	3200 U	420 N
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG	2600 U	∩ 008	3200 U	420 N
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
91-20-3	Naphthalene	SW8270C-S	UG/KG	2500 DJ	2100	1400 DJ	11000 E
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 N
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG	2600 U	008	3200 U	420 N
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG	2600 U	008	3200 U	420 N
29-20-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	2600 ∪	008 0	3200 U	420 N
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	3900 DJ	0026	8200 D	4600
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 N
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	UG/KG	2600 ∪	008	3200 0	420 N
95-95-4	2,4,5-Trichlorophenol	SW8270C-S	UG/KG	11000 U	1600 U	0200 n	840 ∪
91-58-7	2-Chloronaphthalene	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 N
88-74-4	2-Nitroaniline	SW8270C-S	UG/KG	11000 U	1600 U	0290 n	840 □
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG	2600 U	008	3200 0	420 U
208-96-8	Acenaphthylene	SW8270C-S	UG/KG	2600 U	2400	3200 U	1100
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG	2600 U	0008	3200 U	420 U
[99-09-2	3-Nitroaniline	SW8270C-S	UG/KG	11000 U	1600 U	9200 n	840 0
83-32-9	Acenaphthene	SW8270C-S	UG/KG	6400 D	008 0	3200 U	8400 E
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	11000 U	1600 U	9200 n	840 ∪
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	11000 U	1600 U	0290 n	840 N
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	4100 DJ	008	1400 DJ	6400
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	2600 U	800 N	3200 U	420 U

Semi-Volatile Organic Compounds Summary Table of Analytical Data

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B11DL	SF-2004-B12	SF-2004-B12DI	SF-2004-B13
	•		Location	SF-2004-B11	SF-2004-B12	SF-2004-B12	SF-2004-B13
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004
84-66-2	Diethylphthalate	SW8270C-S	UG/KG	D 0095	008	3200 U	420 U
7005-72-3	4-Chlorophenyl-phenylether	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
86-73-7	Fluorene	SW8270C-S	UG/KG	e300 D	008	2200 DJ	10000 €
100-01-6	4-Nitroaniline	SW8270C-S	UG/KG	11000 U	1600 U	9200 n	840 D
534-52-1	4,6-Dinitro-2-methylphenol	SW8270C-S	UG/KG	11000 U	1600 U	029 n	840 U
9-08-98	n-Nitrosodiphenylamine	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
101-55-3	4-Bromophenyl-phenylether	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
118-74-1	Hexachlorobenzene	SW8270C-S	UG/KG	2600 U	008	3200 U	420 U
87-86-5	Pentachlorophenol	SW8270C-S	UG/KG	11000 U	1600 U	0290 n	840 U
85-01-8	Phenanthrene	SW8270C-S	UG/KG	72000 D	16000 E	16000 D	2€000 €
120-12-7	Anthracene	SW8270C-S	UG/KG	a 0096	3000	2200 DJ	14000 E
86-74-8	Carbazole	SW8270C-S	UG/KG	Z 009Z	008	3200 U	8500 E
84-74-2	Di-n-butylphthalate	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 U
206-44-0	Fluoranthene	SW8270C-S	UG/KG	B0000	10000	15000 D	52000 E
129-00-0	Pyrene	SW8270C-S	UG/KG	64000 D	9400	10000 D	39000 €
85-68-7	Butylbenzylphthalate	SW8270C-S	UG/KG	2600 U	008 008	3200 U	420 U
91-94-1	3,3'-Dichlorobenzidine	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 U
56-55-3	Benzo(a)anthracene	SW8270C-S	UG/KG	25000 D	15000 E	2000 D	44000 E
218-01-9	Chrysene	SW8270C-S	UG/KG	46000 D	1100	11000 D	2100
117-81-7	bis(2-Ethylhexyl) phthalate	SW8270C-S	UG/KG	12000 D	30000 €	19000 D	8200 E
117-84-0	Di-n-octylphthalate	SW8270C-S	UG/KG	2600 U	008 0	3200 U	420 U
205-99-2	Benzo(b)fluoranthene	SW8270C-S	UG/KG	33000 D	9200	7200 D	24000 E
207-08-9	Benzo(k)fluoranthene	SW8270C-S	UG/KG	11000 D	1300	3100 0	2600
50-32-8	Benzo(a)pyrene	SW8270C-S	UG/KG	22000 D	2600	4900 D	33000 €
193-39-5	Indeno(1,2,3-cd)pyrene	SW8270C-S	UG/KG	12000 D	4500	2800 DJ	16000 €
53-70-3	Dibenz(a,h)anthracene	SW8270C-S	UG/KG	3900 DJ	O 008	R80 D7	0029
191-24-2	Benzo(g,h,i)perylene	SW8270C-S	UG/KG	14000 D	2500	3400 D	16000 E

Notes:

B = Boring/Core sample

DL = Dilution

G = Grab sample

SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

			Sample Code	SF-2004-B13DL SF-2004-B13	SF-2004-G01	SF-2004-G01DL SF-2004-G01	SF-2004-G02
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/20/2004	4/20/2004	4/20/2004
(Group Code)	(Group Description)						
SVOCS/BNAS		0 00000					
7-66-801	Phenol	SW8Z/0C-S	06/KG		0.069	2300 0	0008
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG		29010		0008
95-57-8	2-Chlorophenol	SW8270C-S	UG/KG	8300	065 290 U	2300 U	008 008
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	8300 0	290 0	2300 U	008
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	1400 DJ	480 7	2300 U	1000
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	8300	0 069 0 0	2300 U	0008
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	8300 U	0 065	2300 U	0008
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	8300 0	U 065	2300 U	008
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	8300 0	910	740 DJ	5200
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	8300 U	D 065	2300 U	008
67-72-1	Hexachloroethane	SW8270C-S	UG/KG	8300 0	0 069	2300 0	008
98-95-3	Nitrobenzene	SW8270C-S	UG/KG	8300 0	065 290 U	2300 U	008
78-59-1	Isophorone	SW8270C-S	UG/KG		0 069	2300 0	008
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG		290 U	2300 U	∩ 008
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG		290 U	2300 0	∩ 008
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG	8300 0	O 069	2300 U	008
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	8300 0	D 065	2300 U	008
91-20-3	Naphthalene	SW8270C-S	UG/KG		940		880
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG		0 069		008
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG		D 065		008
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG	8300 U			008
29-20-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	8300 0	0 069		008
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	3200 DJ	710	250 DJ	006
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	8300 U	0 069	2300 0	008
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	UG/KG	8300 0	0 065	2300 0	008 0
95-95-4	2,4,5-Trichlorophenol	SW8270C-S	UG/KG		1200 U		1600 U
91-58-7	2-Chloronaphthalene	SW8270C-S	UG/KG		0 069		008 0
88-74-4	2-Nitroaniline	SW8270C-S	UG/KG	17000 U	1200 U	4800 U	1600 U
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG		O 069		008
208-96-8	Acenaphthylene	SW8270C-S	UG/KG	8300 0	1000	720 DJ	410 7
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG	8300 0	065 0		008 0
99-09-2	3-Nitroaniline	SW8270C-S	UG/KG	17000 0	1200 U	4800 U	1600 U
83-32-9	Acenaphthene	SW8270C-S	UG/KG	7400 DJ	1300	1000 DJ	1200
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	17000 U	1200 U	4800 U	1600 U
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	17000 U	1200 0	4800 U	1600 U
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	5200 DJ	089	620 DJ	620 J
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	8300 0	290 U	2300 U	800 U

Semi-Volatile Organic Compounds Summary Table of Analytical Data

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B13DL	SF-2004-G01	SF-2004-G01DL	SF-2004-G02
			Location	SF-2004-B13	SF-2004-G01	SF-2004-G01	SF-2004-G02
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/20/2004	4/20/2004	4/20/2004
84-66-2	Diethylphthalate	SW8270C-S	UG/KG	N 0088	N 069	2300 0	N 008
7005-72-3	4-Chlorophenyl-phenylether	SW8270C-S	UG/KG	8300 U	O 069	2300 0	008 008
86-73-7	Fluorene	SW8270C-S	UG/KG	7900 DJ	1500	1200 DJ	1600
100-01-6	4-Nitroaniline	SW8270C-S	UG/KG	17000 0	1200 U	4800 U	1600 U
534-52-1	4,6-Dinitro-2-methylphenol	SW8270C-S	UG/KG	17000 U	1200 U	4800 U	1600 U
86-30-6	n-Nitrosodiphenylamine	SW8270C-S	UG/KG	8300 U	O 069	2300 U	008
101-55-3	4-Bromophenyl-phenylether	SW8270C-S	UG/KG	8300 0	∩ 069	2300 0	008
118-74-1	Hexachlorobenzene	SW8270C-S	UG/KG	8300 0	O 069	2300 U	008
87-86-5	Pentachlorophenol	SW8270C-S	UG/KG	17000 U	1200 U	4800 U	1600 U
85-01-8	Phenanthrene	SW8270C-S	UG/KG	100000 D	13000 E	10000 D	13000 E
120-12-7	Anthracene	SW8270C-S	UG/KG	12000 D	3200	2400 D	2900
86-74-8	Carbazole	SW8270C-S	UG/KG	Q 0066	086	780 DJ	1700
84-74-2	Di-n-butylphthalate	SW8270C-S	UG/KG	8300 0	0.065	2300 U	008
206-44-0	Fluoranthene	SW8270C-S	UG/KG	110000 D	18000 E	15000 D	24000 E
129-00-0	Pyrene	SW8270C-S	UG/KG	93000 D	12000 E	11000 D	16000 E
85-68-7	Butylbenzylphthalate	SW8270C-S	UG/KG	8300 0	340)	2300 U	∩ 008
91-94-1	3,3'-Dichlorobenzidine	SW8270C-S	UG/KG	8300 0	O 069	2300 U	008
56-55-3	Benzo(a)anthracene	SW8270C-S	UG/KG	34000 D	6400	2600 D	0069
218-01-9	Chrysene	SW8270C-S	UG/KG	Q 00009	9300	O 0006	8100
117-81-7	bis(2-Ethylhexyl) phthalate	SW8270C-S	UG/KG	6300 DJ	12000 E	12000 D	21000 E
117-84-0	Di-n-octylphthalate	SW8270C-S	UG/KG	8300 U	0 069	480 DJ	008
205-99-2	Benzo(b)fluoranthene	SW8270C-S	UG/KG	40000 D	9300	2300 D	11000
207-08-9	Benzo(k)fluoranthene	SW8270C-S	UG/KG	15000 D	2000	2400 D	008
50-32-8	Benzo(a)pyrene	SW8270C-S	UG/KG	28000 D	2000	5400 D	7400
193-39-5	Indeno(1,2,3-cd)pyrene	SW8270C-S	UG/KG	16000 D	2800	3000	4400
53-70-3	Dibenz(a,h)anthracene	SW8270C-S	UG/KG	4300 DJ	1000	R80 DJ	1600
191-24-2	Benzo(g,h,i)perylene	SW8270C-S	UG/KG	18000 D	3400	3400 D	4800

Notes:

B = Boring/Core sample

DL = Dilution

G = Grab sample

SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)

J - Estimated concentration

D - Compound is identified at a secondary dilution factor E = Above calibration range

			Sample Code	SF-2004-G02DL SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/20/2004	4/21/2004	4/21/2004	4/22/2004
(Group Code)	(Group Description)						
SVOCS/BINAS		0 000000	()				
7-08-801	Prienoi	SW82/0C-5	06/KG				
111-44-4	bis(2-Chloroethyl) ether	SW8270C-S	UG/KG				
95-57-8	2-Chlorophenol	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
541-73-1	1,3-Dichlorobenzene	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
106-46-7	1,4-Dichlorobenzene	SW8270C-S	UG/KG	<u>2006</u>	4200 U	420)	110 J
95-50-1	1,2-Dichlorobenzene	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
95-48-7	2-Methylphenol	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
108-60-1	2,2'-oxybis(1-Chloropropane)	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
106-44-5	4-Methylphenol	SW8270C-S	UG/KG	4000 D	530 J	1200	430 U
621-64-7	n-Nitroso-di-n-propylamine	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
67-72-1	Hexachloroethane	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
98-95-3	Nitrobenzene	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
78-59-1	Isophorone	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
88-75-5	2-Nitrophenol	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
105-67-9	2,4-Dimethylphenol	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
120-83-2	2,4-Dichlorophenol	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
120-82-1	1,2,4-Trichlorobenzene	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
91-20-3	Naphthalene	SW8270C-S	UG/KG	3200	f 086	360 1	120 J
106-47-8	4-Chloroaniline	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
111-91-1	bis(2-Chloroethoxy)methane	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 ∪
87-68-3	Hexachlorobutadiene	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
29-20-7	4-Chloro-3-methylphenol	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
91-57-6	2-Methylnaphthalene	SW8270C-S	UG/KG	PO 069	4400	260 J	120 J
77-47-4	Hexachlorocyclopentadiene	SW8270C-S	UG/KG	3200 U	4200 N	460 U	430 U
88-06-2	2,4,6-Trichlorophenol	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
95-95-4	2,4,5-Trichlorophenol	SW8270C-S	UG/KG	0059	N 0098		N 880 ∩
91-58-7	2-Chloronaphthalene	SW8270C-S	UG/KG	3200 U		460 U	
88-74-4	2-Nitroaniline	SW8270C-S	UG/KG	0290 N	N 0098	940 0	∩ 088
131-11-3	Dimethylphthalate	SW8270C-S	UG/KG	3200 U	4200 U	460 ∪	430 U
208-96-8	Acenaphthylene	SW8270C-S	UG/KG	3200 U	4200 U	120 J	430 U
606-20-2	2,6-Dinitrotoluene	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
99-09-2	3-Nitroaniline	SW8270C-S	UG/KG	029 n	0098	940 ∩	N 088
83-32-9	Acenaphthene	SW8270C-S	UG/KG	810 DJ	4200 U	310 J	160
51-28-5	2,4-Dinitrophenol	SW8270C-S	UG/KG	029 n	0098	940 U	N 088
100-02-7	4-Nitrophenol	SW8270C-S	UG/KG	0029	N 0098	940 U	N 088
132-64-9	Dibenzofuran	SW8270C-S	UG/KG	220 DJ	∩ 096	200 J	83 7
121-14-2	2,4-Dinitrotoluene	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U

Semi-Volatile Organic Compounds South Fork/South Branch Chicago River, April 20-22, 2004 Summary Table of Analytical Data

			Sample Code	SF-2004-G02DL	SF-2004-G03	SF-2004-G04	SF-2004-G05
	•••		Location	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/20/2004	4/21/2004	4/21/2004	4/22/2004
84-66-2	Diethylphthalate	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
7005-72-3	4-Chlorophenyl-phenylether	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
86-73-7	Fluorene	SW8270C-S	UG/KG	1000 DJ	1400 J	360	160 1
100-01-6	4-Nitroaniline	SW8270C-S	UG/KG	0200 0	0098	940 U	088
534-52-1	4,6-Dinitro-2-methylphenol	SW8270C-S	UG/KG	0059	8600 U	940 U	088 0
86-30-6	n-Nitrosodiphenylamine	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
101-55-3	4-Bromophenyl-phenylether	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
118-74-1	Hexachlorobenzene	SW8270C-S	UG/KG	3200 U	4200 U	460 U	430 U
87-86-5	Pentachlorophenol	SW8270C-S	UG/KG	0099 n	8600 U	940 U	088
85-01-8	Phenanthrene	SW8270C-S	UG/KG	11000 D	8800	4000	1800
120-12-7	Anthracene	SW8270C-S	UG/KG	2100 DJ	1300 J	270	280
86-74-8	Carbazole	SW8270C-S	UG/KG	1300 DJ	810 J	200	430 U
84-74-2	Di-n-butylphthalate	SW8270C-S	UG/KG	3200 U	4200 U	460 U	83
206-44-0	Fluoranthene	SW8270C-S	UG/KG	19000 D	11000	7200	5200
129-00-0	Pyrene	SW8270C-S	UG/KG	14000 D	7100	4000	1600
85-68-7	Butylbenzylphthalate	SW8270C-S	UG/KG	880 DJ	4200 U	460 U	430 U
91-94-1	3,3'-Dichlorobenzidine	SW8270C-S	UG/KG	3200 0	4200 U	460 U	430 U
56-55-3	Benzo(a)anthracene	SW8270C-S	UG/KG	Q 0089	3800	2000	920
218-01-9	Chrysene	SW8270C-S	UG/KG	12000 D	2009	2600	1200
117-81-7	bis(2-Ethylhexyl) phthalate	SW8270C-S	UG/KG	20000 D	37000	5200	2500
117-84-0	Di-n-octylphthalate	SW8270C-S	UG/KG	820 DJ	4200 N	460 U	430 U
205-99-2	Benzo(b)fluoranthene	SW8270C-S	UG/KG	9400 D	2200	2500	1200
207-08-9	Benzo(k)fluoranthene	SW8270C-S	UG/KG	3000 DJ	2000 J	120	84
50-32-8	Benzo(a)pyrene	SW8270C-S	UG/KG	2800 D	3600	3400	880
193-39-5	Indeno(1,2,3-cd)pyrene	SW8270C-S	UG/KG	3400 D	2100 J	1300	1800
53-70-3	Dibenz(a,h)anthracene	SW8270C-S	UG/KG	950 DJ	650 J	460 U	740
191-24-2	Benzo(g,h,i)perylene	SW8270C-S	UG/KG	4200 D	2600 J	1200	2400

Notes:

B = Boring/Core sample DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

Summary Table of Analytical Data

Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring (PAH-SIM)

South Fork/South Branch Chicago River, April 20-22, 2004

SF-2004-B05	SF-2004-B05	Sediment	4/21/2004			1700	13000 E	630	1700	2800	12000 E	1800	11000 E	8800 E	3800	4800	2600	2600	3700	1300	200	1700
SF-20	SF-20	Sed	4/21																			
SF-2004-B04	SF-2004-B04	Sediment	4/21/2004			009	10000 E	740	2300	3600	14000 E	2100	15000 E	16000 E	2000	9200 E	8400 E	3700	4900	1500	570	1400
_							ш 0		<u> </u>	_	<u>ш</u>	0	<u>ш</u>	<u> </u>	0	_	ш	0	0	0	0	ç
SF-2004-B03	SF-2004-B03	Sediment	4/20/2004			1000	8000	200	1500	2700	12000	1800	14000	12000	4900	0069	8500	3400	4600	2200	870	0000
4-B02)4-B02	nent	2004			2100	1300	350	3600	4100	46000 E	8100	64000 E	46000 E	22000 E	24000 E	20000 E	0000 E	7000 E	7000	2600	0000
SF-2004-B02	SF-2004-B02	Sediment	4/20/2004								7		•	7					_			
I-B01A	4-B01A	nent	2004			4600	5500	2600	3500	5100	23000 E	0089	28000 E	24000 E	12000 E	14000 E	15000 E	4900	13000 E	3000	1200	0000
SF-2004-B01A	SF-2004-B01A	Sediment	4/21/2004								. •		. •	•	-	-	-		-			
Sample Code	uo	Sample Matrix	Date:			_{(D}	_{(D}	_O	_O	_O	_O	g	_O	_O	g	_O	_{(D}	_O	_O		_ _	ď
Samp	Location	Samp	d Unit			UG/KG	UG/K	UG/K	UG/KG	UG/K	UG/K	UG/K	UG/K	UG/K	UG/K	UG/KG	UG/K	UG/KG	UG/KG	UG/KG	UG/KG	טאַטן:
			Analytic Method			SIM	SIM	NIS.	NIS.	NIS.	NIS.	NIS.	SIM	SIM	SIM	NIS.	SIM	NIS.	NIS.	NIS.	SIM	ΝÜ
			Analy			PAH_SIN	PAH_SIN	PAH_SIN	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIN	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIN	PAH_SIM	PAH_SIM	DAH
	***		l Name	Description)		lene	Inaphthalene	Acenaphthylene	thene	<i>a</i> :	hrene	ene	hene		Benzo(a)anthracene	ø.)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	ndeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Renzo(a h i)nenylene
			Chemical Name	(Group		Naphthalene	2-Methyl	Acenaph	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a	Chrysene	Benzo(b)	Benzo(k)	Benzo(a	Indeno(1	Dibenz(a	Bonzo/a
			CAS Rn	(Group Code) (Group Description)	PAH-SIM	91-20-3	91-57-6	208-96-8	83-32-9	86-73-7	85-01-8	120-12-7	206-44-0	129-00-0	56-55-3	218-01-9	205-99-2	207-08-9	50-32-8	193-39-5	53-70-3	101-24-2

Notes:

B = Boring/Core sample DL = Dilution

G ≈ Grab sample SF ≈ South Fork South Branch Chicago River

UG/KG = micrograms per kilogram PAH-SIM = Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

Summary Table of Analytical Data Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring (PAH-SIM) South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08
	•••		Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08
			Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	(Group Description)						
PAH-SIM					-		
91-20-3	Naphthalene	PAH_SIM	UG/KG	3100	870	480	1400
91-57-6	2-Methylnaphthalene	PAH_SIM	UG/KG	21000 E	4600 E	430	9400 E
	Acenaphthylene	PAH_SIM	UG/KG	1300	280	220	440
	Acenaphthene	PAH_SIM	UG/KG	3300	1500	1400	2100
	Fluorene	PAH_SIM	UG/KG	4700	1900	1800	3600
	Phenanthrene	PAH_SIM	UG/KG	24000 E	8100 E	23000 E	17000 E
	Anthracene	PAH_SIM	UG/KG	4100	880	13000 E	2000
206-44-0	Fluoranthene	PAH_SIM	UG/KG	20000 €	10000 €	71000 E	20000 E
	Pyrene	PAH_SIM	UG/KG	17000 E	2400 E	40000 E	15000 E
	Benzo(a)anthracene	PAH_SIM	UG/KG	2700	4000	14000 E	7400 E
	Chrysene	PAH_SIM	UG/KG	10000	4300	∃ 0086	3 0096
	Benzo(b)fluoranthene	PAH_SIM	UG/KG	0086	2800 E	12000 E	8900 E
	Benzo(k)fluoranthene	PAH_SIM	UG/KG	3000	1800	4000	3100
50-32-8	Benzo(a)pyrene	PAH_SIM	UG/KG	2800	3400	7200 E	0009
193-39-5	Indeno(1,2,3-cd)pyrene	PAH_SIM	UG/KG	2100	940	1400	1700
53-70-3	Dibenz(a,h)anthracene	PAH_SIM	UG/KG	089	290	630	099
191-24-2	Benzo(g,h,i)perylene	PAH_SIM	UG/KG	2100	1000	1200	2000

B = Boring/Core sample DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River

UG/KG = micrograms per kilogram
PAH-SIM = Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring

Data Qualifiers:

U - Compound was analyzed for but not detected (Unc J - Estimated concentration D - Compound is identified at a secondary dilution fac E = Above calibration range

Summary Table of Analytical Data

Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring (PAH-SIM) South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12
			Location	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)						
							·
	Naphthalene	PAH_SIM	UG/KG	1900	4900	2600	1400
	2-Methylnaphthalene	PAH_SIM	UG/KG	18000 E	14000 E	4100	12000 E
	Acenaphthylene	PAH_SIM	UG/KG	780	720	430	280
83-32-9	Acenaphthene	PAH_SIM	UG/KG	2900	4000	6800 E	2600
	Fluorene	PAH_SIM	UG/KG	2600	2800	7100 E	3600
	Phenanthrene	PAH_SIM	UG/KG	33000 E	48000 E	3 00096	18000 E
	Anthracene	PAH_SIM	UG/KG	2300	0009	13000 E	1900
	Fluoranthene	PAH_SIM	UG/KG	38000 €	54000 E	110000 E	17000 E
	Pyrene	PAH_SIM	UG/KG	25000 E	35000 E	72000 E	13000 E
	Benzo(a)anthracene	PAH_SIM	UG/KG	13000 E	18000 E	26000 E	7200
	Chrysene	PAH_SIM	UG/KG	13000 E	17000 E	25000 E	2000
	Benzo(b)fluoranthene	PAH_SIM	UG/KG	21000 E	26000 E	61000 E	11000 E
	Benzo(k)fluoranthene	PAH_SIM	UG/KG	2200	11000 E	19000 E	2000
	Benzo(a)pyrene	PAH_SIM	UG/KG	12000 E	18000 E	30000 €	5100
193-39-5	Indeno(1,2,3-cd)pyrene	PAH_SIM	UG/KG	3200	2800	2800 E	1100
53-70-3	Dibenz(a,h)anthracene	PAH_SIM	UG/KG	1000	1700	2200	440
191-24-2	Benzo(g,h,i)perylene	PAH_SIM	UG/KG	3500	5300	2000	1300

B = Boring/Core sample

DL = Dilution

G = Grab sample GF = South Fork South Branch Chicago River

UG/KG = micrograms per kilogram PAH-SIM = Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)

J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

Summary Table of Analytical Data

Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring (PAH-SIM) South Fork/South Branch Chicago River, April 20-22, 2004

	<u> </u>		_	Γ						Ш		Ш	Ш			ш					
SF-2004-G02	SF-2004-G02	Sediment	4/20/2004		099	810	260	920	1200	10000	2600	18000 E	13000 E	0069	2000	9200	2700	5700	2400	730	2600
SF-2004-G01	SF-2004-G01	Sediment	4/20/2004		028	730	780	1200	1500	11000 E	3100	20000 E	12000 E	■ 0009	₹ 2000 E	2000 E	3200	5400	2400	840	2700
SF-2004-B13DL	SF-2004-B13	Sediment	4/22/2004		0098	4100 D	650 D	8100 D	9100 D	94000 DE	14000 DE	110000 DE	97000 DE	31000 DE	42000 DE	47000 DE	21000 DE	36000 DE	13000 DE	3700 D	14000 DE
3	 6				Ц	ш		ш	Ш	ш	ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		ш
SF-2004-B13	SF-2004-B13	Sediment	4/22/2004		100001	4200	620	9100	11000 E	130000	18000	140000	100000 E	40000 E	41000	3 0009E	36000 E	20000 E	11000	3800	9100 E
Sample Code	Location	Sample Matrix	Unit Date:		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
			Analytic Method		PAH SIM	PAH SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM	PAH_SIM
			Chemical Name	(Group Code) (Group Description)	Naphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene
			CAS Rn	(Group Code)			~				120-12-7						207-08-9		10		191-24-2

B = Boring/Core sample DL = Dilution

G = Grab sample SF = South Fork South Branch Chicago River

UG/KG = micrograms per kilogram
PAH-SIM = Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

Summary Table of Analytical Data Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring (PAH-SIM)

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Location	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/22/2004	4/22/2004
(Group Code)	(Group Description)					
91-20-3	Naphthalene	PAH SIM	UG/KG	780	300	120
91-57-6	2-Methylnaphthalene	PAH_SIM	UG/KG	5100	320	170
208-96-8	Acenaphthylene	PAH_SIM	UG/KG	240	56	47
83-32-9	Acenaphthene	PAH_SIM	UG/KG	940	320	180
86-73-7	Fluorene	PAH_SIM	UG/KG	1500	400	220
85-01-8	Phenanthrene	PAH_SIM	UG/KG	8200 E	3700	2000
120-12-7	Anthracene	PAH_SIM	UG/KG	1200	770	370
206-44-0	Fluoranthene	PAH_SIM	UG/KG	11000 E	3 0069	3800
129-00-0	Pyrene	PAH_SIM	UG/KG	7500 E	5100 E	3100
56-55-3	Benzo(a)anthracene	PAH_SIM	UG/KG	3200	2100	1100
218-01-9	Chrysene	PAH_SIM	UG/KG	5200	2600	1100
205-99-2	Benzo(b)fluoranthene	PAH_SIM	UG/KG	2600 E	2700	1400
207-08-9	Benzo(k)fluoranthene	PAH_SIM	UG/KG	2300	1400	470
50-32-8	Benzo(a)pyrene	PAH_SIM	UG/KG	3800	2100	1000
193-39-5	Indeno(1,2,3-cd)pyrene	PAH_SIM	UG/KG	1100	720	450
53-70-3	Dibenz(a,h)anthracene	PAH_SIM	UG/KG	420	230	140
191-24-2	Benzo(g,h,i)perylene	PAH_SIM	UG/KG	1100	880	400

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
J - Estimated concentration
D - Compound is identified at a secondary dilution factor
E = Above calibration range

UG/KG = micrograms per kilogram
PAH-SIM = Polynuclear Aromatic Hydrocarbons - Selective Ion Monitoring

G = Grab sample SF = South Fork South Branch Chicago River

B = Boring/Core sample

DL = Dilution

printed 7/14/2004 Page 1 of 4

Summary of Analytical Data Polychlorinated Biphenyls (PCBs) South Fork/South Branch Chicago River, April 20-22, 2004

	-		Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05
			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sed. (Duplicate)
CAS Rn	Chemical Name	Analytic Method U	Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)								
12674-11-2	Aroclor-1016	SW8082	UG/KG	72 0	460 U	760 U	030	670 U	∩ 66
11104-28-2	Aroclor-1221	SW8082	UG/KG	72 U	460 U	100 N	630 U	670 U	∩ 66
11141-16-5	Aroclor-1232	SW8082	UG/KG	72 U	460 U	U 097	630 U	0 029	N 66
53469-21-9	Aroclor-1242	SW8082	UG/KG	72 U	460 U	160 U	630 U	0 0 O	N 66
12672-29-6	Aroclor-1248	SW8082	UG/KG	1300	5200	2900	7700	4400	2300
11097-69-1	Aroclor-1254	SW8082	UG/KG	72 0	460 U	U 097	030 0	U 079	N 66
11096-82-5	Aroclor-1260	SW8082	UG/KG	009	2800	3300 P	3300 P	2500 P	1700 P

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/KG = micrograms per kilogram

Summary of Analytical Data Polychlorinated Biphenyls (PCBs) South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11
			Location	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Analytic Method Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004	4/22/2004	4/22/2004
(Group Code)	Group Code) (Group Description)								
12674-11-2	Aroclor-1016	SW8082	UG/KG	43 U	089 N	089	800 U	700 U	57 U
11104-28-2	Aroclor-1221	SW8082	UG/KG	43 U	089	089	0 008	700 U	10 Z2
11141-16-5	Aroclor-1232	SW8082	UG/KG	43 U	089	089	008	U 007	57 U
53469-21-9	Aroclor-1242	SW8082	UG/KG	43 0	089	089	008	700 U	0 22 N
12672-29-6	Aroclor-1248	SW8082	UG/KG	43 0	4900	6700	1900	8000	870
11097-69-1	Aroclor-1254	SW8082	UG/KG	43 U	089	089	008	U 007	97 U
11096-82-5	Aroclor-1260	SW8082	UG/KG	43 0	2400 P	2200 P	2400 P	2200 P	1000

Notes:
B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/KG = micrograms per kilogram

Summary of Analytical Data

Polychlorinated Biphenyls (PCBs)

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B12	SF-2004-B13	SF-2004-G01	SF-2004-G02
			Location	SF-2004-B12	SF-2004-B13	SF-2004-G01	SF-2004-G02
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/20/2004	4/20/2004
(Group Code) (Group De PCBs	(Group Description)						
12674-11-2	Aroclor-1016	SW8082	UG/KG	008	42 U	0 65	108 108
11104-28-2	Aroclor-1221	SW8082	UG/KG	008	42 U	0 65	08 0
11141-16-5	Aroclor-1232	SW8082	UG/KG	008	42 U	0 65 0	08
53469-21-9	Aroclor-1242	SW8082	UG/KG	008	42 U	0 69	1 08 1 08
12672-29-6	Aroclor-1248	SW8082	UG/KG	4900	310	280	460
11097-69-1	Aroclor-1254	SW8082	UG/KG	008	42 U	O 65	08 80
11096-82-5	Aroclor-1260	SW8082	UG/KG	2500 P	840	490	910

Notes:

B = Boring/Core sample G = Grab sample SF = South Fork South Branch Chicago River

UG/KG ≈ micrograms per kilogram

Summary of Analytical Data Polychlorinated Biphenyls (PCBs) South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Location	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method Unit Date:	Unit Date:	4/21/2004	4/21/2004	4/22/2004
(Group Code) PCBs	(Group Description)					
12674-11-2	Aroclor-1016	SW8082	UG/KG	53 U	46 U	43 U
11104-28-2	Aroclor-1221	SW8082	UG/KG	53 U	46 U	43 U
11141-16-5	Aroclor-1232	SW8082	UG/KG	53 U	46 U	43 U
53469-21-9	Aroclor-1242	SW8082	UG/KG	53 U	46 U	43 U
12672-29-6	Aroclor-1248	SW8082	UG/KG	53 ∪	100 P	110 P
11097-69-1	Aroclor-1254	SW8082	UG/KG	53 U	46 U	43 U
11096-82-5	Aroclor-1260	SW8082	UG/KG	510	360	480

Notes:

B = Boring/Core sample G = Grab sample SF = South Fork South Branch Chicago River UG/KG = micrograms per kilogram

Metals / Inorganic Compounds South Fork/South Branch Chicago River Summary Table of Analytical Results

			Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
	***		Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/20/2004	4/21/2004	4/21/2004	4/20/2004	4/21/2004
roup Code)	(Group Code) (Group Description)							
metals								
7440-38-2	Arsenic	SW6010B-S	mg/Kg	24.4	28.4	26.8	25.2	26
7440-39-3	Barium	SW6010B-S	mg/Kg	418	205	554	499	.424
7440-43-9	Cadmium	SW6010B-S	mg/Kg	28.5	20.6	20.2	20.3	17.2
7440-47-3	Chromium	SW6010B-S	mg/Kg	2930 N	4440 N	436 N	474 N	N 691
7440-50-8	Copper	SW6010B-S	mg/Kg	361	473	444	434	396
7439-92-1	Lead	SW6010B-S	mg/Kg	891	1640	2420	2060	1740
7440-02-0	Nickel	SW6010B-S	mg/Kg	111	167	145	149	162
782-49-2	Selenium	SW6010B-S	mg/Kg	5.3	6.4	4.6	4.5	4.8
7440-22-4	Silver	SW6010B-S	mg/Kg	6	14.9	36.4	29.8	28.5
7440-66-6	Zinc	SW6010B-S	mg/Kg	6210	6260	4930	3810	4450
7439-97-6	Mercury	SW7471A-S	mg/Kg	5.9	13.9	10.2	8.6	6.9
57-12-5	Cyanide	SW9012B-S	mg/Kg	1.2 BN	8.9 N	8.1 N	6.3 N	3.1

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
mg/Kg = milligrams per kilogram

Data Qualifiers:

Summary Table of Analytical Results Metals / Inorganic Compounds

2	ב
Branch Chinago	
رطمم	2
å	ם
ひらば お にんだんのうば	
Ļ	5
4	2

			Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
			Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
			Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)							
metals								
7440-38-2	Arsenic	SW6010B-S	mg/Kg	34.1	13.9	19.7	13.5	35.2
7440-39-3	Barium	SW6010B-S	mg/Kg	572	180	467	287	929
7440-43-9	Cadmium	SW6010B-S	mg/Kg	24.6	1.9	12.2	80	23.4
7440-47-3	Chromium	SW6010B-S	mg/Kg	1490 N	413 N	353 N	196 N	537 N
7440-50-8	Copper	SW6010B-S	mg/Kg	534	104	363	273	486
7439-92-1	Lead	SW6010B-S	mg/Kg	2290	253	2460	1140	2820
7440-02-0	Nickel	SW6010B-S	mg/Kg	247	26.2	106	75	175
7782-49-2	Selenium	SW6010B-S	mg/Kg	6.8	4.6	4	2.6 B	9
7440-22-4	Silver	SW6010B-S	mg/Kg	35.6	0.12 U	70.4	31.9	28.6
7440-66-6	Zinc	SW6010B-S	mg/Kg	4830	559	2240	1410	0099
7439-97-6	Mercury	SW7471A-S	mg/Kg	8.7	2.2	7.3	2	12
57-12-5	Cyanide	SW9012B-S	mg/Kg	5.6 N	0.69 BN	5.5 N	5.6 N	9.3 N

Notes:
B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
mg/Kg = milligrams per kilogram

Data Qualifiers:

Metals / Inorganic Compounds South Fork/South Branch Chicago River Summary Table of Analytical Results

			Sample Code	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13	SF-2004-G01
	-,-		Location	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13	SF-2004-G01
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	(Group Code) (Group Description)							
metals		٠						
7440-38-2	Arsenic	SW6010B-S	mg/Kg	12.7	8.4	25.4	12.7	5.6
7440-39-3	Barium	SW6010B-S	mg/Kg	397	379	629	108	. 122
7440-43-9	Cadminm	SW6010B-S	mg/Kg	10.9	5.6	17.1	0.89	2.1
7440-47-3	Chromium	SW6010B-S	mg/Kg	277 N	142 N	336 N	55.1 N	58.1 N
7440-50-8	Copper	SW6010B-S	mg/Kg	419	238	526	92	139
7439-92-1	Lead	SW6010B-S	mg/Kg	1270	906	2140	263	326
7440-02-0	Nickel	SW6010B-S	mg/Kg	101	26	119	39	22.2
7782-49-2	Selenium	SW6010B-S	mg/Kg	3.2	2.3 B	5.1	1.4 B	1.6 B
7440-22-4	Silver	SW6010B-S	mg/Kg	30.7	10	66.1	2.3	9.9
7440-66-6	Zinc	SW6010B-S	mg/Kg	1590	940	5170	207	395
7439-97-6	Mercury	SW7471A-S	mg/Kg	15.9	2.6	11.7	2.6	0.72
57-12-5	Cyanide	SW9012B-S	mg/Kg	1.1 BN	0.49 BN	2.1 BN	0.84 BN	0.72 BN

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
mg/Kg = milligrams per kilogram

Data Qualifiers:

Metals / Inorganic Compounds South Fork/South Branch Chicago River Summary Table of Analytical Results

			Sample Code	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Location	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/21/2004	4/21/2004	4/22/2004
(Group Code)	Group Code) (Group Description)						
metals							
7440-38-2	Arsenic	SW6010B-S	mg/Kg	7.4	4.3	3,3	2.6
7440-39-3	Barinm	SW6010B-S	mg/Kg	153	117	98.1	43
7440-43-9	Cadmium	SW6010B-S	mg/Kg	2.4	4.1	2.1	1,5
7440-47-3	Chromium	SW6010B-S	mg/Kg	71.3 N	40 N	31.1N	30.8 N
7440-50-8	Copper	SW6010B-S	mg/Kg	164	138	79.8	106
7439-92-1	Lead	SW6010B-S	mg/Kg	285	232	165	136
7440-02-0	Nickel	SW6010B-S	mg/Kg	25.5	19.3	66.7	11.4
7782-49-2	Selenium	SW6010B-S	mg/Kg	2.3 B	1.3 B	0.91 B	0.63 B
7440-22-4	Silver	SW6010B-S	mg/Kg	4.1	7.5	4.7	3.8
7440-66-6	Zinc	SW6010B-S	mg/Kg	512	383	329	291
7439-97-6	Mercury	SW7471A-S	mg/Kg	_	0.72	က	1.6
57-12-5	Cyanide	SW9012B-S	mg/Kg	0.86 BN	0.56 BN	0.33 UN	0.33 UN
5/-12-5	Cyanide	SW8012B-S	mg/Kg	0.86 BN	0.5	NB 9	

Notes:

B = Boring/Core sample

G = Grab sample SF = South Fork South Branch Chicago River mg/Kg = milligrams per kilogram

Data Qualifiers:

printed 7/14/2004 Page 1 of 4

Summary Table for Analytical Data

Wet Chemistry

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)							
Wetchem								
TVS	Total Volatile Solids	E160.4	wt%	22 B	20 B	26 B	26 B	12 B
7723-14-0	Phosphorus, Total (As P)	E365.2	mg/Kg	610	11000	540	2900	11000
700	Total Organic Carbon	E415.1	mg/Kg	>120000	>150000	>140000	>140000	>160000
NH3	Nitrogen, Ammonia	SM4500-NH3	mg/Kg	3200	13000	4100	3900	4700
COD	Chemical, Oxygen Demand	SM5220	mg/Kg	2200	3400	4100	1700	1300
IGNITB	Ignitibility	SW1010	deg F	No flash up to 119 U Flash at 124	Flash at 124	No flash up to 130 U	No flash up to 130 U No flash up to 125 U No flash up to 107 U	No flash up to 107 U
RECN	Reactive Cyanide	SW7.3.3.2	mg/Kg	2.2 U	2.8 U	2.3 U	1.9 U	2 0
RESF	Reactive Sulfide	SW7.3.4.2	mg/Kg	5200	8200	2000	4100	3200
7440-47-3H	Chromium (+6)	SW7196	mg/Kg	8.56 U	1110	8.94 U	7.66 U	7,85 U
표	F	SW9045	S.U.	7.9	8.1	8.1	80	00
긥	Free Liquid	SW9095	mL/100g	<u> </u>	10	7	<u></u>	1
O&G	Oil & Grease, Total Recoverable E1664	E1664	mg/Kg	14000	20000	9000	10000	15000

Notes:

B = Boring/Core sample

G = Grab sample SF = South Fork South Branch Chicago River

mg/Kg = milligrams per kilogram wt% = percent (weight basis) deg F = degrees Fahrenheit

S.U. = standard units mL/100g = milliliters per 100 grams

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected) B - reported value is less than reporting limit, but greater than instrument detection limit

Summary Table for Analytical Data

Wet Chemistry

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
	***		Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
			Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	(Group Code) (Group Description)						:	
Wetchem								
TVS	Total Volatile Solids	E160.4	wt%	26 B	11 B	22 B	6.8 B	46 B
7723-14-0	Phosphorus, Total (As P)	E365.2	mg/Kg	17000	1600	3100	7100	4700
700	Total Organic Carbon	E415.1	mg/Kg	>170000	44000	>160000	84000	>170000
NH3	Nitrogen, Ammonia	SM4500-NH3	mg/Kg	0029	170	2800	730	3600
000	Chemical, Oxygen Demand	SM5220	mg/Kg	0099	06E	7 2900	1300	4800
IGNITB	Ignitibility	SW1010	deg F		No flash up to 138 L	J No flash up to 135 U	No flash up to 138 U No flash up to 135 U No flash up to 140 U No flash up to 110 U	No flash up to 110 U
RECN	Reactive Cyanide	SW7.3.3.2	mg/Kg		1.2 U	2 0	2 ∪	2.3 U
RESF	Reactive Sulfide	SW7.3.4.2	mg/Kg		730	1100	2200	3200
7440-47-3H	Chromium (+6)	SW7196	mg/Kg	12.5 U	5.32 U	J 8.33 U	8.33 U	9:38
핊	Hd	SW9045	s.u.	7.8	7.7	7.9	7.6	8.2
<u> </u>	Free Liquid	SW9095	mL/100g		10		<u> </u>	1 1
O&G	Oil & Grease, Total Recoverable E1664	E1664	mg/Kg	10000	2000	10000	8800	12000

Notes:

B = Boring/Core sample

G = Grab sample
SF = South Fork South Branch Chicago River
mg/Kg = milligrams per kilogram
wt% = percent (weight basis)
deg F = degrees Fahrenheit
S.U. = standard units
mL/100g = milliliters per 100 grams

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected) B - reported value is less than reporting limit, but greater than instrument detection limit

Summary Table for Analytical Data

Wet Chemistry

South Fork/South Branch Chicago River, April 20-22, 2004

		Sample Code	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
		Location	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
		Sample Matrix	Sediment	Sediment	Sediment	Sediment
Chemical Name	Analytic Method	Unit Date:	4/22/2004	4/22/2004	4/22/2004	
Group Code) (Group Description)						
Total Volatile Solids	E160.4	wt%	26 B	7.2 B	21 B	5.4 B
Phosphorus, Total (As P)	E365.2	mg/Kg	11000	10000	2700	3500
Fotal Organic Carbon	E415.1	mg/Kg	>140000	38000	>130000	2900
Nitrogen, Ammonia	SM4500-NH3	mg/Kg	3800	800	4800	110
Chemical, Oxygen Demand	SM5220	mg/Kg	4500	780	4900	380 0
Ignitibility	SW1010	deg F	No flash up to 137 U	No flash up to 137 U	No flash up to 137 U No flash up to 138 U No flash up to 145	No flash up to 145 U
Reactive Cyanide	SW7.3.3.2	mg/Kg	2 0	1.7 U	2.4 ∪	1.2 U
Reactive Sulfide	SW7.3.4.2	mg/Kg	42	640	910	110
Chromium (+6)	SW7196	mg/Kg	8.83	7.01 U	∩ 96.6	5.06 U
	SW9045	s.u.	8.5	8.2	8.4	7.7
ree Liquid	SW9095	mL/100g	10	13	10	4
Oil & Grease, Total Recoverable	ole E1664	mg/Kg	10000	2300	8200	3300

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River

mg/Kg = milligrams per kilogram wt% = percent (weight basis) deg F = degrees Fahrenheit S.U. = standard units

mL/100g = milliliters per 100 grams

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
B - reported value is less than reporting limit, but greater than instrument detection limit

Summary Table for Analytical Data

Wet Chemistry

South Fork/South Branch Chicago River, April 20-22, 2004

			Sample Code	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Location	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method Unit	Unit Date:					
(Group Code)	(Group Code) (Group Description)							
Wetchem								
TVS	Total Volatile Solids	E160.4	wt%	10 B	14 B	3 B	4.3 B	1.8 B
7723-14-0	Phosphorus, Total (As P)	E365.2	mg/Kg	1600 U	3400	1400 U	3000	2800
1 00		E415.1	mg/Kg	87000	29000	23000	16000	10000
NH3		SM4500-NH3	mg/Kg	180	1400	160	120	62
00 00	Chemical, Oxygen Demand	SM5220	mg/Kg	540 U	870	089	430	430
IGNITB		SW1010	deg F					
RECN	Reactive Cyanide	SW7.3.3.2	mg/Kg					
RESF	Reactive Sulfide	SW7.3.4.2	mg/Kg					
7440-47-3H	Chromium (+6)	SW7196	mg/Kg	7.23 U	9.56	0.3 U	5.46 U	5.28 U
Hd		SW9045	s.u.					
긥	Free Liquid	SW9095	mL/100g					
O&G	Oil & Grease, Total Recoverable E1664	E1664	mg/Kg	4700	3000	2200	2600	1300

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River mg/Kg = milligrams per kilogram wt% = percent (weight basis) deg F = degrees Fahrenheit S.U. = standard units mL/100g = milliliters per 100 grams

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected) B - reported value is less than reporting limit, but greater than instrument detection limit

Summary Table of Analytical Data Volatile Organic Compounds - TCLP

တ္တ

4	
Ò	
\circ	
200	
2	
S	
20-22	
\sim	
₹	
- 5	
7	
_	
<u>X</u> er	
_>	
$\overline{\mathbf{r}}$	
_	
0	
C	
ď	
_0	
\bar{z}	
\overline{C}	
_	
2	
9	
anc	
, ro	
ā	
_	
_	
=	
ನ	
7	
×	
¥	
≒	
٠.	
щ	
$\boldsymbol{\mathcal{L}}$	
outh	
ಠ	

			TCLP-Regs	Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
				Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
				Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004
(Group Code) VOAs-TCLP	(Group Code) (Group Description)								
75-01-4	Vinyl Chloride	SW8260B-TCLP	200	UG/L	5 0	5 0	5 0	5 0	∪
75-35-4	1,1-Dichloroethene	SW8260B-TCLP	700	NG/L	5	5 0	5 0	∩	2
78-93-3	2-Butanone	SW8260B-TCLP	200,000	NG/L	∞	5 0	5 0	18	19
67-66-3	Chloroform	SW8260B-TCLP	0009	NG/L	5 0	5 ∪	50	5	5
56-23-5	Carbon Tetrachloride	SW8260B-TCLP	500	NG/L	5 0	5 0	5 0	2	2
107-06-2	1,2-Dichloroethane	SW8260B-TCLP	200	NG/L	5 0	5 0	5 0	Э	2
71-43-2	Benzene	SW8260B-TCLP	200	NG/L	5 0	5 0	2 ∪	5	2 Ω
79-01-6	Trichloroethene	SW8260B-TCLP	200	NG/L	2 ∩	2 ∪	5 ∪	5	5
127-18-4	Tetrachloroethene	SW8260B-TCLP	700	NG/L	5 0	5 0	5 0	5	2 ∩
108-90-7	Chlorobenzene	SW8260B-TCLP	100,000	UG/L	5 0	5 U	5 0	5 U	2 ∩

B Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liters
TCLP = Toxicity Characteristic Leachate Procedure

Summary Table of Analytical Data Volatile Organic Compounds - TCLP South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
				Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
		-		Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)								
VOAS-TCLP									
75-01-4	Vinyl Chloride	SW8260B-TCLP	200	NG/L	5 0	2	5 0	9	9
75-35-4	1,1-Dichloroethene	SW8260B-TCLP	200	UG/L	5 U	52	5 0	9	9
78-93-3	2-Butanone	SW8260B-TCLP	200,000	ÙG/L	24	4	19	38	35
67-66-3	Chloroform	SW8260B-TCLP	0009	UG/L	5 U	2	5 0	5 0	9
56-23-5	Carbon Tetrachloride	SW8260B-TCLP	200	UG/L	5	2	5 0	5 0	5 U
107-06-2	1,2-Dichloroethane	SW8260B-TCLP	200	UG/L	5 0	5	2 0	5 0	5 0
71-43-2	Benzene	SW8260B-TCLP	200	UG/L	5 0	2 ∩	5 0	5 0	50
79-01-6	Trichloroethene	SW8260B-TCLP	200	UG/L	5	2	5 0	5 0	9
127-18-4	Tetrachloroethene	SW8260B-TCLP	200	UG/L	5 0	2	5 0	5 0	5 0
108-90-7	Chlorobenzene	SW8260B-TCLP	100,000	UG/L	5 0	5 0	5 0	2 0	5 0

B = Boring/Core sample

G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liters
TCLP = Toxicity Characteristic Leachate Procedure

Summary Table of Analytical Data

Volatile Organic Compounds - TCLP South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Location	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code) VOAs-TCLP	Group Code) (Group Description) //OAs-TCLP							
75-01-4	Vinyl Chloride	SW8260B-TCLP	200	NG/L	2 ∩	2 ∩	2 □	5 0
75-35-4	1,1-Dichloroethene	SW8260B-TCLP	700	NG/L	2 ∩	2 ∩	5 C	2. □
78-93-3	2-Butanone	SW8260B-TCLP	200,000	UG/L	7	20	19	2 7
67-66-3	Chloroform	SW8260B-TCLP	0009	NG/L	2 ∩	2 ∩	5 0	5 U
56-23-5	Carbon Tetrachloride	SW8260B-TCLP	200	NG/L	2 ∩	5	2 □	5 0
107-06-2	1,2-Dichloroethane	SW8260B-TCLP	200	NG/L	2 ∪	2 ∩	2 €	5 0
71-43-2	Benzene	SW8260B-TCLP	200	NG/L	2 ∩	5	2 □	5 0
79-01-6	Trichloroethene	SW8260B-TCLP	200	NG/L	5 0	2 ∪	2 □	2 □
127-18-4	Tetrachloroethene	SW8260B-TCLP	700	UG/L	2 ∪	5 ∪	2 ∩	2 □
108-90-7	Chlorobenzene	SW8260B-TCLP	100,000	UG/L	5 0	2.0	2 ∩	6

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liters
TCLP = Toxicity Characteristic Leachate Procedure

Page 1 of 3 printed 7/14/2004

Summary table of Analytical Data

Semi-Volatile Organic Compounds - TCLP South Fork/South Branch Chicago River, April 20-22, 2004

		TCLP-Regs	Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
			Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004
(Group Code) (Group Description) SVOCs/BNAs-TCLP								
1,4-Dichlorobenzene	SW8270C-TCLP	7500	UG/L	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 U	10 U	10 U	U 01	10 U
4-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 U	10 ∪	10 U	10 □	10 <u></u> 0
Hexachloroethane	SW8270C-TCLP	3000	UG/L	10 U	10 U	10 U	10 U	10 U
Nitrobenzene	SW8270C-TCLP	2000	UG/L	10 U	10 U	10 U	10 0	10 U
Hexachlorobutadiene	SW8270C-TCLP	200	UG/L	10 U	10 U	10 U	10 0	10 0
2,4,6-Trichlorophenol	SW8270C-TCLP	200	UG/L	10 U	10 ∪	10 U	10 U	10 U
2,4,5-Trichlorophenol	SW8270C-TCLP	400,000	UG/L	20 ∩	20 0	20 ∪	20 0	20 0
2,4-Dinitrotoluene	SW8270C-TCLP	130	UG/L	10 U	10 U	10 U	10 0	10 U
Hexachlorobenzene	SW8270C-TCLP	130	UG/L	10 01	10 0	10 ∪	10 0	10 0
Pentachlorophenol	SW8270C-TCLP	100,000	UG/L	20 U	20 ∪	20 U	20 ∪	20 0
Pyridine	SW8270C-TCLP	2000	UG/L	10 0	10 0	10 01	10 U	10 U

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River UG/L = micrograms per liters TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers:

Summary table of Analytical Data Semi-Volatile Organic Compounds - TCLP South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08
				Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08
				Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)							
SVOCs/BNAs-TCLP	TCLP							
106-46-7	1,4-Dichlorobenzene	SW8270C-TCLP	7500	UG/L	10 U	10 U	10 01	10 U
95-48-7	2-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 U	10 U	10 01	10 U
106-44-5	4-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 U	10 U	10 01	10 U
67-72-1	Hexachioroethane	SW8270C-TCLP	3000	UG/L	10 U	10 01	10 01	10 U
98-95-3	Nitrobenzene	SW8270C-TCLP	2000	UG/L	10 U	10 01	10 01	10 U
87-68-3	Hexachlorobutadiene	SW8270C-TCLP	200	UG/L	10 U	10 U	10 0	10 U
88-06-2	2,4,6-Trichlorophenol	SW8270C-TCLP	200	UG/L	10 U	10 01	10 01	10 U
95-95-4	2,4,5-Trichlorophenol	SW8270C-TCLP	400,000	UG/L	20 U	20 U	20 0	20 U
121-14-2	2,4-Dinitrotoluene	SW8270C-TCLP	130	UG/L	10 U	10 01	10 0	10 U
118-74-1	Hexachlorobenzene	SW8270C-TCLP	130	UG/L	10 U	10 01	10 0	10 U
87-86-5	Pentachlorophenol	SW8270C-TCLP	100,000	UG/L	20 U	20 U	20 0	20 U
110-86-1	Pyridine	SW8270C-TCLP	2000	UG/L	10 01	10 01	10 U	10 U

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River UG/L = micrograms per liters TCLP = Toxicity Characteristic Leachate Procedure

Summary table of Analytical Data Semi-Volatile Organic Compounds - TCLP South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
			•	Location	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	(Group Code) (Group Description)								
SVOCs/BNAs-TCLP	TCLP				-				
106-46-7	1,4-Dichlorobenzene	SW8270C-TCLP	7500	UG/L	10 U	10 01	10 U	10 U	2 7
95-48-7	2-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 U	10 01	10 U	10 01	10 U
106-44-5	4-Methylphenol	SW8270C-TCLP	200,000	UG/L	10 01	10 01	10 U	10 0	2 2
67-72-1	Hexachloroethane	SW8270C-TCLP	3000	UG/L	10 U	10 U	10 U	10 0	10 U
98-95-3	Nitrobenzene	SW8270C-TCLP	2000	UG/L	10 U	10 01	10 U	10 U	10 U
87-68-3	Hexachlorobutadiene	SW8270C-TCLP	500	UG/L	10 0	10 U	10 U	10 0	10 01
88-06-2	2,4,6-Trichlorophenol	SW8270C-TCLP	200	UG/L	10 U	10 U	10 U	10 0	7
95-95-4	2,4,5-Trichlorophenol	SW8270C-TCLP	400,000	UG/L	20 U	20 U	20 U	20 U	1
121-14-2	2,4-Dinitrotoluene	SW8270C-TCLP	130	UG/L	10 U	10 U	10 U	10 U	1
118-74-1	Hexachlorobenzene	SW8270C-TCLP	130	UG/L	10 U				
87-86-5	Pentachlorophenol	SW8270C-TCLP	100,000	UG/L	20 U				
110-86-1	Pyridine	SW8270C-TCLP	2000	UG/L	10 U	10 U	10 U	10 U	27

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liters
TCLP = Toxicity Characteristic Leachate Procedure

Summary Table of Analytical Data

Metals - TCLP
South Fork/South Branch Chicago River, April 20-22, 2004

		٠.								
			TCLP-Regs	Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05
				Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05
				Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sed. (Duplicate)
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/04	4/20/2004	4/20/2004	4/21/04	4/21/04	4/21/04
7440-38-2	Arsenic	SW6010B-TCLP	2000	ng/L	20.6	24.5	36.4	38.6	25.7	26
7440-39-3	Barium	SW6010B-TCLP	100,000	ng/L	747 E	792 E	595 E	724 E	644 E	713 E
7440-43-9	Cadmium	SW6010B-TCLP	1000	ng/L	4.2 B	4 B	3.7 B	5.3	3.8 B	4.1 B
7440-47-3	Chromium	SW6010B-TCLP	2000	ug/L	75.1	89.5	17.7 B	28.3	44.1	62.8
7439-92-1	Lead	SW6010B-TCLP	5,000	ng/L	7.4 B	44.2	75.2	55.4	29.4	26.8
7439-97-6	Mercury	SW7471A-TCLP	200	ng/L	0.14 U	0.14 U	0.17 B	0.14 U	0.14 U	0.14 U
7782-49-2	Selenium	SW6010B-TCLP	1000	ng/L	<u>⊃</u> 6	<u>n</u> 6	<u>n</u> 6	12.4 B	<u> </u>	<u></u> 0
7440-22-4	Silver	SW6010B-TCLP	2000	ug/L	16.8 B	17 B	15.7 B	20 B	16.9 B	17.7 B

B = Boring/Core sample G = Grab sample SF = South Fork South Branch Chicago River ug/L = micrograms per liter TCLP = Toxicity Characteristic Leachate Procedure

U - Compound was analyzed for but not detected (Undetected)
E - estimated because of the presence of interference
B - reported value is less than reporting limit, but greater than instrument detection limit

Data Qualifiers:

Summary Table of Analytical Data Metals - TCLP

South Fork/South Branch Chicago River, April 20-22, 2004

		_	TCLP-Regs	Sample Code	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
				Location	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
				Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:				
7440-38-2	Arsenic	SW6010B-TCLP	2000	ug/L	31.3	26.8	21.2	53.3
7440-39-3	Barium	SW6010B-TCLP	100,000	ug/L	3 998	722 E	619 E	944 E
7440-43-9	Cadmium	SW6010B-TCLP	1000	ng/L	8.8	3.5 B	2.9 B	5.1
7440-47-3	Chromium	SW6010B-TCLP	2000	ug/L	126	22.7	10.2 B	17.6 B
7439-92-1	Lead	SW6010B-TCLP	2,000	ng/L	26.1	154	50.3	64.9
7439-97-6	Mercury	SW7471A-TCLP	200	ug/L	0.14 U	0.13 U	0.15 B	0.13
7782-49-2	Selenium	SW6010B-TCLP	1000	lug/L	12 B	<u>)</u> 6	0 6	<u> </u>
7440-22-4	Silver	SW6010B-TCLP	2000	ug/L	30.5	16.6 B	13 B	21.4 B

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River

ug/L = micrograms per liter

TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers:
U - Compound was analyzed for but not detected (Undetected)
E - estimated because of the presence of interference
B - reported value is less than reporting limit, but greater than instrument detection limi

Summary Table of Analytical Data Metals - TCLP

South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Location	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:				
7440-38-2	Arsenic	SW6010B-TCLP	2000	ng/L	24.6	11.6 B	32.3	9.7 B
7440-39-3	Barium	SW6010B-TCLP	100,000	ng/L	886 E	608 巨	748 E	649 E
7440-43-9	Cadmium	SW6010B-TCLP	1000	ng/L	2.9 B	2.7 B	3.6 B	2.5 B
7440-47-3	Chromium	SW6010B-TCLP	2000	ng/L	14.8 B	23.9	20.7	16.8 B
7439-92-1	Lead	SW6010B-TCLP	5,000	ug/L	91.1	7 7	97.3	62.2
7439-97-6	Mercury	SW7471A-TCLP	200	ug/L	0.14 U	0.15 U	0.22 B	0.15 U
7782-49-2	Selenium	SW6010B-TCLP	1000	ng/L	<u>⊃</u> 6	5	<u>n</u> 6	∩ 6
7440-22-4	Silver	SW6010B-TCLP	2000	ug/L	11.5B	11.8 B	16.9 B	10.5 B

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
ug/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers:

U - Compound was analyzed for but not detected (Undetected)
E - estimated because of the presence of interference
B - reported value is less than reporting limit, but greater than instrument detection limit

South Fork/South Branch Chicago River, April 20-22, 2004

	-		TCLP-Regs	Sample Code	TCLP-Regs Sample Code SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04
	.			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04
				Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004
Group Code)	Group Code) (Group Description)							
lerbicides								
4-75-7	2,4-D (Dichlorophenoxyacetic Acid) SW8151A-TCLP	SW8151A-TCLP	10,000	ng/L	1 n	1 0	10	1 0
93-72-1	Silvex (2,4,5-TP)	SW8151A-TCLP	1000	ng/L	0.10	0.10	0.10	0.1

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River

ug/L = micrograms per liter

TCLP = Toxidity Characteristic Leachate Procedure

South Fork/South Branch Chicago River, April 20-22, 2004

			10.0000					
			TCLP-Regs	Sample Code	SF-2004-B05	TCLP-Regs Sample Code SF-2004-B05 SF-2004-D05 SF-2004-B06 SF-2004-B07	SF-2004-B06	SF-2004-B07
	-,.			Location	SF-2004-B05	SF-2004-D05	SF-2004-B06	SF-2004-B07
				Sample Matrix	Sediment	Sed. (Duplicate)	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	(Group Code) (Group Description)							
Herbicides								
94-75-7	2,4-D (Dichlorophenoxyacetic Acid) SW8151A-TCLP	SW8151A-TCLP	10,000	ng/L	1	7	1 U	71
93-72-1	Silvex (2,4,5-TP)	SW8151A-TCLP	1000	ng/L	0.1	0.1	0.1 0	0.1 0

Notes:

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
ug/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	TCLP-Regs Sample Code	SF-2004-B08	SF-2004-B09	SF-2004-B10
				Location	SF-2004-B08	SF-2004-B09	SF-2004-B10
				Sample Matrix	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/21/2004	4/22/2004
(Group Code)	(Group Description)						
Herbicides							
94-75-7	2,4-D (Dichlorophenoxyacetic Acid)	SW8151A-TCLP	10,000	ng/L	<u></u>	1 1	7
93-72-1	Silvex (2,4,5-TP)	SW8151A-TCLP	1000	ng/L	0.1 U	0.1 0	0.1

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
ug/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	TCLP-Regs Sample Code SF-2004-B11	SF-2004-B12 SF-2004-B13	SF-2004-B13
				Location	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Sample Matrix	Sediment	Sediment	Sediment
SAS Rn	Chemical Name	Analytic Method		Unit Date:	4/22/2004	4/22/2004	4/22/2004
Group Code)	Group Code) (Group Description)						
derbicides							
34-75-7	2,4-D (Dichlorophenoxyacetic Acid)	cetic Acid) SW8151A-TCLP	10,000	ng/L	1 U	1 0	1 <u>U</u>
93-72-1	Silvex (2,4,5-TP)	SW8151A-TCLP	1000	ng/L	0.1	0.10	0.10

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

Notes:

B = Boring/Core sample

G = Grab sample

SF = South Fork South Branch Chicago River

ug/L = micrograms per liter

TCLP = Toxicity Characteristic Leachate Procedure

Summary Table of Analytical Data
Pesticides - TCLP
South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	CLP-Regs Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
	•			Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05
				Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)								
pesticides									
58-89-9	gamma-BHC (Lindane) SW8081A	SW8081A	400	UG/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
76-44-8	Heptachlor	SW8081A	80	NG/L	0.05 U	0.05 U	0.05 U	0.05	0.05 U
1024-57-3	Heptachlor epoxide	SW8081A	80	NG/L	0.05 U	0.05 U	0.05 U	0.05	0.05 U
72-20-8	Endrin	SW8081A	20	UG/L	0.10	0.10	0.1 U	0.1	0.1
72-43-5	Methoxychlor	SW8081A	10,000	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
8001-35-2	Toxaphene	SW8081A	200	UG/L	5 0	2 ∩	5 0	5	2 ∩
12789-03-6	Chlordane	SW8081A	30	NG/L	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

Summary Table of Analytical Data
Pesticides - TCLP
South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
				Location	SF-2004-D05	SF-2004-B06	SF-2004-B07	SF-2004-B08	SF-2004-B09
		•		Sample Matrix	Sed. (Duplicate)	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:		4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Code)	Group Code) (Group Description)								
pesticides									
58-89-9	gamma-BHC (Lindane) SW8081A	SW8081A	400	UG/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05
76-44-8	Heptachlor	SW8081A	œ	NG/L	0.05 U	0.05 U	0.05 U	0.05 U	0,05
1024-57-3	Heptachlor epoxide	SW8081A	80	UG/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
72-20-8	Endrin	SW8081A	20	UG/L	0.1	0.1	0.110	0.1 U	0.1
72-43-5	Methoxychlor	SW8081A	10,000	UG/L	0.5 U	0.5 U	0.5	0.5 U	0,5 U
8001-35-2	Toxaphene	SW8081A	200	UG/L	5 0	5 U	50	2	25
12789-03-6	Chlordane	SW8081A	30	UG/L	2.5 U	2.5 U	2.5 U	2.5 ∪	2.5 U

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

Summary Table of Analytical Data
Pesticides - TCLP
South Fork/South Branch Chicago River, April 20-22, 2004

			TCLP-Regs	Sample Code	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Location	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
				Sample Matrix	Sediment	Sediment	Sediment	Sediment
CAS Rn	Chemical Name	Analytic Method		Unit Date:	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Code)	Group Code) (Group Description)							
pesticides								
58-89-9	gamma-BHC (Lindane) SW8081A	SW8081A	400	UG/L	0.05 U	0.05 U	0.05 U	0.05 U
76-44-8	Heptachlor	SW8081A	∞	UG/L	0.05 U	0.05 U	0.05 U	0.05 U
1024-57-3	Heptachlor epoxide	SW8081A	œ	NG/L	0.05 U	0.05 U	0.05 U	0.05 U
72-20-8	Endrin	SW8081A	20	UG/L	0.10	0.10	0.1 U	0.10
72-43-5	Methoxychlor	SW8081A	10,000	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8001-35-2	Toxaphene	SW8081A	200	NG/L	5 0	5 0	2 ∩	5 U
12789-03-6	Chlordane	SW8081A	30	UG/L	2.5 U	2.5 U	2.5 ∪	2.5 U

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
UG/L = micrograms per liter
TCLP = Toxicity Characteristic Leachate Procedure

Data Qualifiers: U - Compound was analyzed for but not detected (Undetected)

Summary of Analytical Data Geotechnical Analysis South Fork/South Branch Chicago River, April 20-22, 2004

		Sample Code	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05	SF-2004-B06
	-	Location	SF-2004-B01A	SF-2004-B02	SF-2004-B03	SF-2004-B04	SF-2004-B05	SF-2004-D05	SF-2004-B06
		Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sed. (Duplicate)	Sediment
Parameter Name	Analytic Method	Unit Date:	4/21/2004	4/20/2004	4/20/2004	4/21/2004	4/21/2004	4/21/2004	4/21/2004
(Group Description)									
Geotechnical									
Grainsize (Gravel) (a)	ASTM Method D422	%	2.3	1.1	0	_	18.4	8.5	41.2
Grainsize (Sand) (a)	ASTM Method D422	%	32.5	16.7	19.9	8.9	23.3	27.4	43.2
Grainsize (Silt) (a)	ASTM Method D422	%	35.5	50.3	47.9	53.1	36.2	39	10.7
Grainsize (Clay) (a)	ASTM Method D422	%	29.7	32	32.3	37	22.1	25.1	4.9
Specific Gravity	ASTM Method D854		1.73	1.44	1.84	1.37	1.88	1.87	2.5
	reported by chemical								
% Total Solids	laboratory	%	46	36	43	52	49	33	77
	reported by								
	geotechnical laboratory	_						-	
% Total Solids	on subsample	%	49.7	58.1	45.2	60	49.2	50.6	72.9

Notes:
B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
(a) See Appendix F for particle size breakdown

printed 8/20/2004 Page 2 of 3

Summary of Analytical Data
Geotechnical Analysis
South Fork/South Branch Chicago River, April 20-22, 2004

					. A				
		Sample Code	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
		Location	SF-2004-B07	SF-2004-B08	SF-2004-B09	SF-2004-B10	SF-2004-B11	SF-2004-B12	SF-2004-B13
		Sample Matrix	Sediment						
Parameter Name	Analytic Method	Unit Date:	4/21/2004	4/21/2004	4/21/2004	4/22/2004	4/22/2004	4/22/2004	4/22/2004
(Group Description)									
Geotechnical									
Grainsize (Gravel) (a)	ASTM Method D422	%	9	0.7	0	7	4.4	0	16.9
Grainsize (Sand) (a)	ASTM Method D422	%	25.5	54.4	28.8	59.8	88.6	33.7	79.6
Grainsize (Silt) (a)	ASTM Method D422	%	40.2	30.6	44.4	22.3	2.3	44.9	0.1
Grainsize (Clay) (a)	ASTM Method D422	%	28.3	14.2	26.8	15.8	4.8	21.4	3.4
Specific Gravity	ASTM Method D854		2.1	2.27	1.84	2.07	2.5	2.16	2.55
	reported by chemical								<u> </u>
% Total Solids	laboratory	%	48	48	4	47	28	41	79
	geotechnical								
	laboratory on								
% Total Solids	subsamble	%	47	54.6	42.4	48.3	70.2	48.5	78

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
(a) See Appendix F for particle size breakdown

Summary of Analytical Data

Geotechnical Analysis

South Fork/South Branch Chicago River, April 20-22, 2004

	-	Sample Code	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
		Location	SF-2004-G01	SF-2004-G02	SF-2004-G03	SF-2004-G04	SF-2004-G05
		Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Parameter Name	Analytic Method	Unit Date:	4/20/2004	4/20/2004	4/21/2004	4/21/2004	4/22/2004
(Group Description)							
Grainsize (Gravel) (a)	ASTM Method D422	%	2.4	0.3	0	0	0
Grainsize (Sand) ^(a)	ASTM Method D422	%	78.5	67.2	86	88.2	95.3
Grainsize (Silt) (a)	ASTM Method D422	%	10	11.9	7.4	4,3	.8
Grainsize (Clay) (a)	ASTM Method D422	%	9.1	20.6	6.6	7.5	2.9
Specific Gravity	ASTM Method D854		2.34	1.96	2.3	2.53	2.57
	reported by chemical						
% Total Solids	laboratory	%	26	41	62	71	92
	reported by						
	geotechnical laboratory						
% Total Solids	on subsample	%	54.3	43.8	2.79	53.9	76.1

Notes:

B = Boring/Core sample
G = Grab sample
SF = South Fork South Branch Chicago River
(a) See Appendix F for particle size breakdown

Appendix D Sample Delivery Group (SDG) Narrative

Analytical Data Package for CDM Federal Programs

Client Project: South Fork, South Branch, Chicago River, 6152-006

SDG# C0344

Mitkem Project ID: C0344

May 17, 2004

Prepared For:

CDM Federal Programs

125 S. Wacker Drive Suite 600

Chicago, IL 60606

Attn: Mr. David Bjostad

Prepared By:

Mitkem Corporation

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to CDM Federal Programs' South Fork, South Branch Chicago River project, number 6152-006. Under this deliverable, analysis results are presented for twenty samples that were received between April 20 and 23, 2004. Analyses were performed per specifications in the project's Scope of Work and the chain of custody forms, and per discussion with the client. The Mitkem Workorder Report is included in the Sample Transmittal Documentation section of the report to cross-reference client sample ID with laboratory sample ID.

The analyses were performed according to EPA SW-846 and other methods and reported in a full CLP-format data deliverable package. Grain size and specific gravity analyses were subcontracted STL Laboratories of Burlington, VT. The entire STL data package is included in the data report. Please note that a portion of the STL data package is printed on both sides of the page.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis (Total):

Surrogate recovery: recoveries were within the QC limits with the exception of elevated recoveries for one or more surrogates due to matrix interference in the following samples: SF-2004-B02, SF-2004-B03, SF-2004-B05, SF-2004-D05, SF-2004-B09, SF-2004-B08, SF-2004-G04, SF-2004-B07, SF-2004-B12 and the MSD analyzed on sample SF-2004-B07. Percent recoveries were within the QC limits for each sample when reanalyzed at dilution, with the exception of SF-2004-G04DL, which continued to have one high percent recovery.

Lab control sample: spike recoveries were within the QC limits with the exception of elevated recoveries for five analytes in the medium-level LCS, V1BLCS. Please note that this medium-level LCS is only associated with the dilution of sample SF-2004-G02, and that none of the compounds with elevated recoveries were detected in this analysis.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Fifty spike recoveries out of 132 were outside of the recovery limits. Two out of 66 replicate RPDs were outside of the QC limits. Please note that percent recoveries for all of these compounds were within the QC limits in the associated laboratory control sample. Per SW-846 Method 8000B, this constitutes matrix interference.

Sample analysis: The following samples were reanalyzed at dilution using smaller sample aliquots: SF-2004-B01, SF-2004-B02, SF-2004-B03, SF-2004-B05, SF-2004-B07, SF-2004-B08, SF-2004-B09, SF-2004-B10, SF-2004-B11, SF-2004-B12, SF-2004-D05 and SF-2004-G04. Sample SF-2004-G02 was reanalyzed using the medium level approach. Sample SF-2004-B03 was reanalyzed at two different dilutions, identified with the suffix DL and DL1. Please note that the final dilution reanalysis occurred beyond the method holding time on May 10, 2004. Internal standard areas were outside of the QC limits in the original analyses of several samples, and in the dilution analyses of a few samples. No other unusual observation was made for the analysis.

3. Volatile Analysis (TCLP)

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B13. Spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no unusual observation was made for the analysis

4. Semivolatile Analysis (Total, Full-Scan):

Alkanes were determined as part of TIC and are presented in the Alkane Narrative report following the narrative.

Surrogate recovery: recoveries were within the QC limits with the exception of one base/neutral surrogate in samplesSF-2004-B02, SF-2004-G01, SF-2004-G04, SF-2004-B12, one acid and one base/neutral surrogate in samples SF-2004-B11 and SF-2004-G05, and two acid and one base/neutral surrogates in sample SF-2004-B13. Please note that all surrogates were within the QC limits in the dilution analysis of sample SF-2004-B13. Two surrogate standards exceeded the upper QC limits in method blank SBLK2K. Please note that the upper QC limit for these surrogates is less than 100%. Per laboratory policy, these surrogates are acceptable, as upper limits of less than 100% reflect sample matrix effects that are not applicable to method blanks.

Lab control sample: spike recoveries were within the QC limits with the exception of high recovery of hexachlorocyclopentadiene in both the LCS and its duplicate. Please note that this compound was not detected in any associated sample.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Forty-nine out of 128 spike recoveries, and ten out of 64 replicate RPDs were outside of the QC limits. Please note that percent recoveries for all of these compounds, with the exception of hexachlorocyclopentadiene, were within the QC limits in the associated laboratory control sample. Per SW-846 Method 8000B, this constitutes matrix interference. In addition, the sample, MS and MSD required analysis at 8X dilution. This resulted in the spike concentration being below the low point of the initial calibration, resulting in "J" qualified values for most MS/MSD compounds.

Sample analysis: all samples were initially analyzed without dilution, but due to severe matrix interference from non-target compounds, most undiluted analyses were unusable as internal standards could not be identified. The following samples required analysis at dilution: SF-2004-B07 and its MS/MSD (8X), SF-2004-B09 (5X), SF-2004-B03 (5X), SF-2004-D05 (5X), SF-2004-B01A (5X), SF-2004-B04 (5X), SF-2004-G03 (8X), SF-2004-B06 (10X), SF-2004-B10 (8X), SF-2004-B05 (5X) and SF-2004-B08 (5X). The following samples were reanalyzed at dilution, or at greater dilution: SF-2004-B02, SF-2004-B11, SF-2004-B12, SF-2004-B13, SF-2004-G12 and SF-2004-G12. Due to matrix interferences, some of the PAH compounds, particularly isomeric pairs, could not be properly quantified in the initial analyses of samples SF-2004-B11, SF-2004-B12 and SF-2004-B13. The dilution reanalyses for these samples contain the more reliable PAH results. Due to sample matrix interference, all tentatively identified compounds could not be properly quantified in the undiluted analysis of sample SF-2004-B12 due to masking of their associated internal standard. No other unusual observation was made for the analyses.

5. Semivolatile Analysis (Total, PAH-SIM):

To achieve lower reporting limits, polynuclear aromatic hydrocarbon (PAH) compounds were analyzed by Method 8270 operating in the selected ion monitoring (SIM) mode. Following the analysis of these samples by conventional full-scan Method 8270, and per discussion with the client, a portion of the original sample extract was analyzed by PAH-SIM.

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits in the LCS and duplicate LCS.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Most spike percent recoveries and replicate RPDs were outside of the QC limits due to the relatively low spike concentrations compared to the significantly greater concentrations of these compounds native to the unspiked sample. In addition, the sample, MS and MSD all required analysis at a 10X dilution.

Sample analysis: all samples were analyzed at 10X dilution. The concentrations of several compounds exceeded the upper calibration range of the instrument. As these compounds are quantified within the calibration range of the conventional full-scan Method 8270 analysis, further dilution was not performed. Only sample SF-2004-B13 was reanalyzed by SIM at greater dilution to insure all compounds were quantified within the calibration range of either the PAH-SIM or full-scan analysis. No other unusual observation was made for the analyses.

6. Semivolatile Analysis (TCLP):

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. All compounds were recovered within the QC limits with the exception of pyridine, which was not recovered in the MS.

Sample analysis: no other unusual observation was made for the analyses.

7. Pesticides Analysis (TCLP):

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

8. PCB Analysis:

Surrogate recovery: recoveries were within the QC limits with the exception of elevated recovery for decachlorobiphenylo in several samples due to coeluting interferences.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Spike recovery and replicate RPD could not be accurately determined due to interference from the relatively high concentrations of aroclor 1248 and aroclor 1260 native to the unspiked sample. In addition, this sample, MS and MSD required analysis at a 10X dilution.

Sample analysis: the following samples were analyzed at dilution: SF-2004-B02 (5X) and SF-2004-B03, SF-2004-B04, SF-2004-B05, SF-2004-B07 and its MS/MSD, SF-2004-B08, SF-2004-B09, SF-2004-B10 and SF-2004-B12 (all at 10X). No other unusual observation was made for the analysis.

9. Herbicides Analysis (TCLP):

Surrogate recovery: recoveries were within the OC limits.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SF-2004-B07. Spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

10. Metals/Cyanide Analysis (Total):

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike analysis was performed on sample SF-2004-B07. Spike recoveries were within the QC limits with the exception of chromium and cyanide. These analytes are flagged with an "N" on the data report forms. A post digest spike was performed with improved recovery, indicating matrix interference.

Matrix duplicate: matrix duplicate was performed on sample SF-2004-B07. Replicate RPDs were within the QC limits.

Sample analysis: no other unusual observation was made for the analyses.

11. Metals Analysis (TCLP):

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike analysis was performed on sample SF-2004-B07. Spike recoveries were within the QC limits.

Matrix duplicate: matrix duplicate was performed on sample SF-2004-B07. Replicate RPDs were within the QC limits.

Matrix spike: matrix spike was performed on sample BPGW2 for the aqueous samples

Sample analysis: the ICP serial dilution analysis performed on sample SF-2004-B07 was outside of the QC limits for barium. Barium results in the TCLP analyses are qualified with the "E" flag. No other unusual observation was made for the analyses.

12. Wet Chemistry Analyses:

Samples were analyzed for total volatile solids, total phosphorous, total organic carbon, ammonia, chemical oxygen demand, flashpoint, reactive cyanide, reactive sulfide, hexavalent chromium, pH, paint filter liquids and oil & grease. Several analyses were modified to address the soil/sediment sample matrix. Chemical oxygen demand was performed on a DI water leacheate of the sample, prepared using the ASTM procedure. Results are reported on a dry-weight corrected basis. Oil & grease results are reported on a separate sheet to allow for proper calculation of results.

Lab control sample: spike recoveries were within the QC limits for all analyses.

Matrix spike: matrix spike analyses were performed where appropriate. Percent recoveries were within the QC limits with the exception of total phosphorous and ammonia. Please note that the QC limits for these analyses apply to aqueous samples only, and are considered advisory for soil/sediment samples.

Matrix duplicate: matrix duplicate analyses were performed where appropriate. Replicate RPDs were within the QC limits with the exception of total phosphorous. A second duplicate analysis was performed with RPD again exceeding the QC limits. This is likely due to lack of homogeneity of the sample or matrix interference.

Sample analysis: the method blank for total volatile solids contained a detected value exceeding the reporting limit at 2.9 wt%. Sample results are qualified with the "B" flag to indicate potential low level contamination. The concentration of total organic carbon in several samples exceeded the upper range of the instrument. Dilution analyses are not performed for total organic carbon in soil, as the soil is analyzed directly. Results for these samples are reported using the ">" symbol. No other unusual observation was made for the analyses.

13. Subcontracted Analyses:

Grain size and specific gravity analyses were subcontracted STL Laboratories of Burlington, VT. The entire STL data package, including any notes on the analyses, is included in the data report. Please note that the STL data package is printed on both sides of the page.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report". The STL data package is paginated separately, following the Last Page of Data Report sheet.

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Edward A. Lawler

Laboratory Operations Manager

04/23/04

ALKANE NARRATIVE REPORT Report date : 05/07/2004 SDG: C0344

Client Sample ID: SF-2004-G01 Compound	Lab Sample ID: C0344-04B RT Est. Conc.	File ID: S2E006 Q
Branched Alkane	8.80 1600	J
Client Comple ID. GE 2004 GO2	Lob Comple ID. CO244 OFD	File TD GORDOG
Client Sample ID: SF-2004-G02 Compound		Q Q SZE006
Branched Alkane	6.66 1900	 Ј
Branched Alkane	7.21 2600	
Branched Alkane	8.11 6700	J
Straight-chain Alkane Branched Alkane	8.81 9000 10.64 34000 16.31 860	J J
Straight-chain Alkane	16.31 860	J
Straight-chain Alkane	17.21 1200	J .
Client Sample ID: SF-2004-G04	Lab Sample ID: C0344-14B	File ID: S2E007
Compound	RT Est. Conc.	Q
Branched Alkane	7.28 790	
Branched Alkane	10.31 880	J
Branched Alkane	10.71 2100	J
Client Sample ID: SF-2004-B13	Lab Sample ID: C0344-16C	File ID: S2E008
Client Sample ID: SF-2004-B13 Compound	RT Est. Conc.	Q
Branched Alkane	10.34 3500	J :
Branched Alkane	10.75 4600	J
Client Sample ID: SF-2004-B12	Lab Sample ID: C0344-17C	File ID: S2E008
Compound	RT Est. Conc.	Q
Branched Alkane	6.80 3200	J
Branched Alkane	7.36 3600	J
Straight-chain Alkane Branched Alkane	10.42 17000	J
Straight-chain Alkane	10.83 22000 11.53 16000	J J
porturgito official refined	11.33	U
Client Sample ID: SF-2004-B11	Lab Sample ID: C0344-18C	File ID: S2E008
Compound	RT Est. Conc.	Q
Branched Alkane	10.37 0.0	
Branched Alkane	10.78 0.0	
Branched Alkane	11.53 0.0	
•		
Client Sample ID: SF-2004-GO5 Compound	Lab Sample ID: C0344-19B RT Est. Conc.	File ID: S2E008
		0008A

Straight-chain Alkane Straight-chain Alkane	10.33 13.15		J J	
Client Sample ID: SF-2004-B13DL Compound	Lab Sample RT	ID: C0344-16CDI Est. Conc.	L Q	File ID: S3
Branched Alkane		7300	Ъ	
Client Sample ID: SF-2004-B11DL Compound	ŔŦ		Q	File ID: S3
Branched Alkane Branched Alkane Straight-chain Alkane	8.71 10.77 11.35		ID ID	
Client Sample ID: SF-2004-B09 Compound	RT			le ID: S3C834
Branched Alkane Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.97 8.72 9.29 10.78 11.36	31000 190000	J J J J J	_
Client Sample ID: SF-2004-G02DL Compound	Lab Sample RT		Q	File ID: S3
Branched Alkane Branched Alkane Branched Alkane	7.97 9.28 11.35		ID ID ID	
Client Sample ID: SF-2004-B12DL Compound	Lab Sample RT	ID: C0344-17CDL Est. Conc.	Q	File ID: S3
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.97 8.72 10.78 11.36	11000 72000	ற ற ற	
Client Sample ID: SF-2004-G01DL Compound	Lab Sample RT	ID: C0344-04BDL Est. Conc.	Q	File ID: S3
Branched Alkane Straight-chain Alkane Branched Alkane	7.97 10.44 11.35	1600	JD JD	
Client Sample ID: SF-2004-B03 Compound	RT	: C0344-03C Est. Conc.	File Q	e ID: S3C835
Branched Alkane Branched Alkane Straight-chain Alkane	8.72 10.78 11.80	93000	J J J	0008B

Client Sample ID: SF-2004-D05 Compound	Lab Sample ID: C0344-07C RT Est. Conc.	File ID: S3C835
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.98 46000 8.72 25000 10.79 210000 11.37 140000	J J
Client Sample ID: SF-2004-B01A Compound	Lab Sample ID: C0344-08C RT Est. Conc.	File ID: S3C83
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.97 16000 8.72 14000 10.78 46000 11.36 30000	
Client Sample ID: SF-2004-B04 Compound	Lab Sample ID: C0344-10C RT Est. Conc.	File ID: S3C835
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.97 38000 8.72 30000 10.79 150000 11.36 120000	J J J
Client Sample ID: SF-2004-G03 Compound	Lab Sample ID: C0344-11B RT Est. Conc.	File ID: S3C835 Q
Branched Alkane Branched Alkane Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.92 7400 8.71 12000 9.28 16000 10.78 46000 11.36 33000	J J
Client Sample ID: SF-2004-B06 Compound		File ID: S3C835
Branched Alkane Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.15 8100 7.97 23000 8.72 16000 10.78 55000 11.36 39000	J
Client Sample ID: SF-2004-B10 Compound	Lab Sample ID: C0344-20C RT Est. Conc.	
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	8.72 13000 9.28 15000 10.78 33000 11.36 23000	

Lab Sample ID: C0344-12C

Client Sample ID: SF-2004-B08

File ID: S3C837

Compound	RT	Est. Conc.	Q
Branched Alkane Branched Alkane Branched Alkane Branched Alkane	7.93 8.67 10.74 11.31	16000 16000 63000 43000	J J J

Appendix E USACE Data Quality Analysis

CELRC-TS-HE 2 July 2004

MEMORANDUM FOR RECORD

SUBJECT: Data quality analysis (DQA) for samples collected from the South Fork of the South Branch (SFSB) of the Chicago River, Chicago Illinois, 20-22 April 2004.

- 1. The U.S. Army Corps of Engineers (USACE), Chicago District, and the City of Chicago are investigating alternatives for the restoration of the South Fork, South Branch of the Chicago River (SFSB), and the primary objective of the data collection was to determine if the sediment in the SFSB exceeded TCLP or other hazardous waste criteria.
- 2. CDM collected the samples, and the CDM point of contact (POC) is David Bjostad phone (312) 251-8003, 125 South Wacker Drive, Suite 600, Chicago, Illinois 60606. The samples were collected under Contract Number DACW23-02-D-0003, Work Order Number 0003. Mitkem Corporation, 175 Metro Center Boulevard, Warwick, RI 02886, phone (401) 732-3400, performed the laboratory analyses (Project Number 6152-006) (U.S. Army Corps Validated Laboratory).
- 3. The following twenty sediment samples (fifteen core, one of which was a field duplicate, and five grab samples) were collected on 20-22 April 2004:

Table 1. Sample Information

Table 1. Sample Information				
Sample ID	Matrix	Sample Type		
SF-2004-B01 ¹	Sediment	Core		
SF-2004-B01A	Sediment	Core		
SF-2004-B02	Sediment	Core		
SF-2004-B03	Sediment	Core		
SF-2004-B04	Sediment	Core		
SF-2004-B05	Sediment	Core		
SF-2004-D05	Sediment	Field Duplicate		
SF-2004-B06	Sediment	Core		
SF-2004-B07	Sediment	Core		
SF-2004-B08	Sediment	Core		
SF-2004-B09	Sediment	Core		
SF-2004-B10	Sediment	Core		
SF-2004-B11	Sediment	Core		
SF-2004-B12	Sediment	Core		
SF-2004-B13	Sediment	Core		
SF-2004-G01	Sediment	Grab		
SF-2004-G02	Sediment	Grab		
SF-2004-G03	Sediment	Grab		
SF-2004-G04	Sediment	Grab		
SF-2004-G05	Sediment	Grab		

¹ Sample not analyzed. Was re-sampled as SF-2004-B01A

The core samples were analyzed for bulk chemistry and TCLP/hazardous waste analyses (Tables 2 and 3) and grab samples were analyzed for bulk chemistry only (Table 2). The methods employed, the required detection limits, and holding times are listed in each table.

Table 2: List of Parameters for Sediment Bulk Chemistry.

Parameter	Test Method(s) Employed	Req. Detect. Limit / Req. Holding Time
Arsenic	6010B	1.0 / 180 days
Barium	6010B	5.0 / 180 days
Cadmium	6010B	1.0 / 180 days
Chromium (Total and	6010B For Total and 7196*	1.0 / Digestion 30 days - Analysis within 96 hours
Hexavalent)	For Hexavalent Chromium	(QAP – SW 846)
Copper	6010B	2.5 / 180 days
Lead	6010B	5.0 / 180 days
Mercury	7471A	0.02 / 28days
Nickel	6010B	5.0 / 180 days
Selenium	6010B	1.0 / 180 days
Silver	6010B	5.0 / 180 days
Zinc	6010B	2.0 / 180 days
Cyanide, Total	9012B*	25.0 / 14 days
Total Phosphorus	365.2	5.0 / NA ¹
Oil and Grease	1664	NA
Ammonia Nitrogen N as NH ₃	Standard Method 4500*	1.0 / 28 days
Chemical Oxygen Demand	Standard Method 5220*	200 / NA
Total Organic Carbon	415.1*	500 / 28 days
Semivolatiles (except PAHs)	8270C	Varies / 14 days to Extraction – 40 days to Analysis
PNAs ²	8270 – SIM ²	Varies / 14 days to Extraction – 40 days to Analysis
PCBs	8082	Varies / 14 days to Extraction – 40 days to Analysis
Volatiles	8260B	Varies / 14 days
% Volatile Solids	160.4	NA / 7 days
% Total Solids	Laboratory SOP*	NA / 7days
Particle Size With	ASTM D422	NA / NA
Hydrometer		
Specific Gravity by Water	ASTM D854	NA / NA
Pycnometer		

¹NA = Not Applicable, ²PNA = Polynuclear Aromatic Hydrocarbon, SIM = Selective Ion Monitoring.

³ SOP = Standard Operating Procedure for percent solids – Method 160.3 was listed in the CDM Sampling Plan, but it is mainly designed for aqueous samples

^{*}Method Differed From Method In Scope of Work and CDM Sampling Plan

Table 3. List of TCLP and Hazardous Waste Parameters

Parameter	Test Method(s) Employed	Req. Detect. Limit/Holding Time
TCLP ¹ RCRA Metals	TCLP - 6010B (TCLP -	Varies / 14 days to Extraction – 40 days to Analysis
	7471A – For Mercury)	
TCLP Volatiles	TCLP - 8260B	Varies / 14 days to Extraction – 40 days to Analysis
TCLP Semivolatiles	TCLP - 8270C	Varies / 14 days to Extraction – 40 days to Analysis
TCLP Herbicides	TCLP - 8151A	Varies / 14 days to Extraction – 40 days to Analysis
TCLP Pesticides	TCLP - 8081A	Varies / 14 days to Extraction – 40 days to Analysis
Flash Point	1010	NA ² / 24 hours
Soil and Waste pH	9045	Within 0.1 STD units / 24 hours
Reactive Cyanide	HCN (SW846 Ch 7.3.3.2)	< 250 mg HCN/kg / 24 hours
Reactive Sulfide	H2S (SW846 Ch 7.3.4.2)	< 500 mg H ₂ S/kg / 24 hours
Paint Filter	9095	NA / NA

¹TCLP = Toxicity characteristic leaching procedure

Per USACE, Chicago District, instructions, the Flash Point, Reactive Cyanide, Reactive Sulfide and Paint Filter tests were not performed on the field duplicate (SF-2004-D05)

- 4. Per the Chain of Custody, the temperature requirement was met. The samples were shipped in four coolers, and all four of the coolers were received at the laboratory at a temperature range of 4 ± 2 °C.
- 5. The laboratory data was submitted as an Electronic Data Deliverable (EDD) on CD and was received at the USACE, Chicago District, on 27 May 2004. A printed copy of the main data set (around 600 pages) was also provided. The full data package contains five pdf files containing approximately 5500 pages of data, not including the summary tables, which were provided in Excel files. Due to limited resources and the large amount of data, this review does not provide an in-depth evaluation of the methods and calibration procedures, but it does provide a summary of the completeness, representativeness, and sensitivity of the data.
- 6. The samples were analyzed for the parameters shown in Tables 2 and 3, and most of the test methods employed by the laboratory corresponded to the ones provided in the Scope of Work (SOW) and CDM Sampling Plan, except for the following methods: Hexavalent chromium, total cyanide, ammonia nitrogen, chemical oxygen demand, % total solids and total organic carbon. After correspondence with CDM and the laboratory (see CDM Response), the methods in the CDM Sampling Plan were determined to be in error, because they were designed for aqueous samples. Consequently, the laboratory employed the corresponding methods that were designed for sediment sample analysis.
- 7. According to the CDM Sampling Plan, there was a 1 day (24-hour) holding time for each of the following tests: Flash Point, Soil and Waste pH, Reactive Cyanide, and Reactive Sulfide, and Table 4 shows the samples and corresponding tests where this holding time was exceeded. After

 $^{^{2}}NA = Not Applicable$

correspondence with CDM and the laboratory (see CDM Response), the data were deemed to be useable if they were qualified as estimated.

Table 4. Samples With Holding Time Exceedances*

-	Flash Point	Soil and Waste pH	Reactive Cyanide	Reactive Sulfide
Sample Name	Holding	Holding Time	Holding Time	Holding Time
	Time [days]	[days]	[days]	[days]
SF-2004-B02	1	1	2	1
SF-2004-B03	1	1	2	1
SF-2004-D05	NA	< 1	NA	NA
SF-2004-B06	5	< 1	15	14
SF-2004-B07	6	< 1	15	14
SF-2004-B08	5	< 1	15	14
SF-2004-B10	6	4	14	13
SF-2004-B11	5	4	14	13
SF-2004-B12	5	4	14	13
SF-2004-B13	6	4	14	13

*Numbers in bold indicate the tests and actual holding times, which exceeded the 1-day holding time. NA = Not Applicable (Tests were not required for this sample)

- 8. Due to high analyte concentrations and matrix interference, dilutions were commonly performed during the VOC analyses and smaller sample aliquots were used. The final dilution for Sample SF-2004-B03 was analyzed on 10 May 2004, and, as acknowledged in the narrative statement, this final analysis exceeded the holding time.
- 9. In the SOW, the required detection limits of some chemical compounds are reported to vary according to the particular compound, and these required detection limits were subject to Corps approval. Consequently, the required detection limits were based on the CDM Sampling Plan, which was subsequently approved by the Corps. The actual detection limits were not specifically reported with the tests results, but the method blanks indicate that the instruments were capable of meeting the required detection limits.

 Nevertheless, the dilution factors and the presence of non-detected compounds above the required detection limit indicate that the actual detection limits exceeded the required detection limit for several test methods. The following test methods had issues concerning the required detection limit:
 - a. Volatiles: Based a review of the non-detected compounds in the largest sample aliquot (non-diluted sample), the required detection limits were only met for a few volatile compounds in a few samples, and, generally, the detection limits were not met for the majority of the volatile compounds in any of the samples. Nevertheless, the non-detected compounds in the samples were commonly within 20 parts per billion (pbb) of the required detection limit.
 - b. Semi-Volatiles: Based a review of the non-detected compounds in the largest sample aliquot (non-diluted sample), the required detection limits were only met for a few semi-volatile compounds in a few samples, and, generally, the detection limits were not met for the majority of the semi-

- volatile compounds in any of the samples. The actual detection limit was often ten times the required detection limit due to sample dilution. The narrative mentions that there was severe matrix interference from non-target compounds and most non-diluted samples were not useable because internal standards could not be identified.
- c. PNAs: All the PNA compounds in the PNA-SIM analysis were detected in all the samples, and high concentrations that exceeded the calibration range were common. Therefore, it is difficult to ascertain the actual detection limit. The narrative notes that all the samples were analyzed at ten times dilution. It should be noted that PNAs were also analyzed with the semi-volatile compounds, and they were commonly identified at a secondary dilution factor. Therefore, the PNA results from the semi-volatile analysis should be used to determine compound concentrations that exceeded the calibration range in the PNA-SIM analysis.
- d. PCBs: The required detection limits were not met due to samples that were analyzed at dilution.

After correspondence with CDM and the laboratory (see CDM Response), it was determined that elevated percent moisture in the sediment samples was the primary cause of the elevated reporting limits, since reporting limits are adjusted to a dry weight basis.

- 10. Method blanks were run at the required frequency for all the test methods. A quantifiable concentration that exceeded the reporting limit was only reported for total volatile solids (2.9 wt.%). Field blanks were not run.
- 11. Matrix Spike (MS) and Matrix Spike Duplicates (MSDs) were run at the required frequency. The following test methods had issues concerning the recovery and quality control (QC) limits:
 - a. Volatiles: Fifty spike recoveries of 132 were outside the recovery limits, and two of 66 replicate relative percent differences (RPDs) were outside the QC limits. Problems were attributed to matrix interference.
 - b. Semi-Volatiles: Forty-nine out of 128 spike recoveries were outside the recovery limits and 10 of 64 RPDs were outside the QC limits. Due to an eight times dilution, the concentrations of the compounds spiked into the MS/MSD sample were below the initial calibration and had to be estimated. Problems were attributed to matrix interference.
 - c. Semi-Volatile TCLP: Pyridine was not recovered in the MS, but 58 % was recovered in the MSD.
 - d. PNAs: Most spike recoveries and replicate RPDs were outside the QC limits due to low spike concentrations compared to the high concentrations in the native, non-spiked sample. The sample, MS, and MSD all required analysis at a 10 times dilution.
 - e. PCBs: Spike recovery and replicate RPDs could not be determined due to interference from high concentrations of Aroclor 1248 and 1260 in the

- native, non-spiked sample. The sample, MS, and MSD all required analysis at a 10 times dilution.
- f. Metals and Cyanide: Chromium and cyanide spike recoveries were outside the QC limits. A post-digestion spike was performed with improved recovery, indicating matrix interference.
- g. Wet Chemistry: The percent recovery for the MS for total phosphorus was quite lower and the MS for ammonia was slightly lower than the QC limits, but the QC limits apply to aqueous samples and are only advisory for sediment samples.

After correspondence with CDM and the laboratory (see CDM Response), it was determined that matrix spike exceedances were attributed to "sample-related conditions," and not to laboratory QC failures. Some sample recoveries were above the laboratory control limits and some were below, so a clear directional bias was not evident.

- 12. A field duplicate (SF-2004-D05) was collected and analyzed. Laboratory duplicates were not run. QC limits were not established for the field duplicate in the SOW or CDM Sampling Plan, but substantial differences in parameter concentrations can often be observed when comparing the sample (SF-2004-B05) to the corresponding field duplicate (SF-2004-D05). It is likely that these differences are a result of matrix interference and/or environmental sample heterogeneity.
- 13. Laboratory controls samples (LCSs) were run at the required frequency, and spike recoveries were within the QC limits except for the following test methods that had issues concerning the LCSs.
 - a. Volatiles: Elevated recoveries occurred for five analytes in the medium level LCS, V1BLCS. This LCS was only associated with sample SF-2004-G02, and none of the compounds with elevated recoveries in the LCS were detected in this analysis.
 - b. Semi-Volatiles: An elevated recovery of hexachlorocyclopentadiene occurred in both the LCS and the LCS duplicate, but this compound was not detected in any associated sample.
- 14. Surrogate spikes appeared to be run at the required frequency and with the correct analytes. Following test methods had issues concerning the surrogate recoveries:
 - a. Volatiles: One or more surrogate recoveries were elevated for most of the samples, and this was attributed to matrix interference. Percent recoveries were within the QC limits when the samples were diluted and reanalyzed, with the exception of SF-2004-G04DL, which maintained one high percent recovery.
 - b. Semi-Volatiles: One surrogate exceeded the QC limits in samples SF-2004-B02, SF-2004-B12, SF-2004-G01, and SF-2004-G04 and two surrogates exceeded the QC limits in samples SF-2004-B11, SF-2004-

- B13, and SF-2004-G05. All surrogates were in the QC limits in the dilution analysis of sample SF-2004-B13.
- c. PCBs: Elevated recovery of decachlorobiphenyl was observed in several samples, and this was attributed to co-eluting interferences.
- 15. Corrective action forms were not present in the data package, but most of the deficiencies identified above were reported in the narrative statement submitted with the laboratory data.
- 16. For the TCLP metals analysis, an inductive coupled plasma (ICP) serial dilution analysis was performed on sample SF-2004-B07, and the result for barium was outside of the QC limits. Consequently, the results for barium were qualified as estimated due to the presence of interference.

According to the SOW, the major objective of the sample collection and analysis effort was to determine if the sediment in the South Fork, South Branch of the Chicago River was hazardous per exceedance of the TCLP and other hazardous waste criteria. The QC analyses for the TCLP tests had a few problems, such as the spiked compound pyridine was not recovered in the MS for the TCLP semi-volatile analysis and barium had to be estimated for the TCLP metals analysis. However, generally, the TCLP data was within the OC limits and the analyte concentrations in the sediment were significantly less than the TCLP regulatory limits. Consequently, the laboratory results appear to be suitable for determining whether the sediment exhibits hazardous toxicity characteristics. The data for determining other hazardous characteristics, notably ignitability, reactivity or corrosivity, are useable but they should be used with caution. Several samples exceeded the holding times provided in the CDM Sampling Plan, but, after correspondence with CDM and the laboratory (see CDM Response), the data were deemed to be useable as long as the data were qualified as estimated. As noted in the CDM Response, the method holding times for the hazardous characteristics of reactivity and corrosivity are not well defined and there is no holding time for the ignitability method. Moreover, it is believed that the methods for determining reactivity are seriously flawed. Consequently, project specific considerations and engineering judgment should be employed to determine whether or not the characteristics of these samples might affect the viability of the project.

The substantial amount of QC problems that were observed during the analyses was primarily attributed to matrix interference and not to unacceptable laboratory performance, where matrix interference refers to the effects that arose from the native physical or chemical composition of the sediment. The reported data appear to meet the specifications in the SOW, and they are of adequate quality and applicable for the intended purpose of the sample collection and analysis effort. As with all laboratory results with qualified data and quality control problems, the associated data should be should be used with caution. It is also important to note that there were often substantial variations in analyte concentrations between the field sample (FS-2004-B05) and field duplicate (SF-2004-D05), and this indicates that a considerable amount of matrix interference and/or environmental sample heterogeneity was present.

Richard Saichek Environmental Engineering Section

CDM Response

Responses to Comments / Questions regarding Laboratory Data

Date: June 21, 2004

Re: South Fork South Branch Chicago River, Sediment Sample Analyses

Comments/Questions received June 9, 2004 via e-mail

The questions from Mr. Saichek are listed below, followed by the CDM response:

1. According to the CDM Sampling Plan, there was a 1 day (24-hour) holding time for each of the following tests: Flash Point, Soil and Waste pH, Reactive Cyanide, and Reactive Sulfide. This holding time was exceeded for many of these analyses.

CDM has discussed this issue extensively with the Mitkem laboratory President, Vice President, Laboratory Operations Manager, and Project Manager. Mitkem has consulted the U.S. Environmental Protection Agency (EPA) Methods Information Communication Exchange (MICE) and CDM believes the data are useable, as explained below. CDM's chemist and data validator, Scott Kirchner, has reviewed the data in question and has been involved in discussions over the past 10 days about these data and believes that, if he were validating these data (not in the scope for CDM), he would accept these data and assign a "J" qualifier (estimated concentration) to these results.

a. There is no specific 24-hour holding time listed in the analytical method for these four EPA SW-846 methods. Instead, the analytical method for EPA SW-846 Method 9045, 7.3.3.2, and 7.3.4.2, states that samples should be analyzed as soon as possible (while maintaining the samples under refrigeration and in the dark, which occurred). CDM typically interprets this to mean 24 hours, which is what was included in Table 6 of the SAP (January 2004); however, 24 hours is not a specific EPA requirement.

For flash point, the CDM SAP Table 6 holding time was in error because no holding time, not even "as soon as possible," is listed in the analytical method (SW 1010)

b. Virtually all other SW-846 methods have specific holding times listed; some even specifically specify a 24-hour holding time. This suggests a holding time of 24 hours for pH, reactive cyanide and reactive sulfide does not reflect a regulatory requirement and longer holding times may be acceptable.

Mitkem, based on their chemistry expertise and knowledge of the scientific literature regarding analytical testing, believes that there is no scientific basis for a holding time of 24 hours for these analyses and that use of a longer

- holding time criteria does not cause significant change in the reliability of the data (as long as samples were stored properly, as was the case for this project).
- c. Mitkem contacted the EPA MICE (Methods Information Communication Exchange, www.epa.gov/epaoswer/hazwaste/test/mice.htm) service, which is a service that provides reference information for RCRA and SW-846 issues. EPA MICE confirmed that no specific holding times exist for these methods. They stated that one week is generally considered the acceptable holding time for pH on a soil/solid sample. The same one week time period could also be reasonably applied to flashpoint analyses, as long as the samples were stored in the recommended manner (which occurred). They stated the holding times for the total analysis methods could be applied to the reactivity methods. Based on the information from the EPA MICE service, one week would be considered acceptable for the pH, flashpoint and reactive sulfide analyses, with two weeks considered reasonable for reactive cyanide because the total cyanide holding time is 14 days (SAP Table 5).
- d. The SW-846 7.3.3.2 and 7.3.4.2 methods of analysis for reactivity are believed by EPA to be seriously flawed (www.epa.gov/epaoswer/hazwaste/test/freact.htm) and generate data that could grossly underestimate the true concentrations. This EPA source says "The EPA does not recommend" use of the SW-846 Chapter 7 Sections 7.3.3.2 and 7.3.4.2 analytical methods and threshold criteria for reactive cyanide and reactive sulfide. MICE also provided information that the reactivity methods were being withdrawn in favor of total analyses for cyanide and sulfide.
- e. Mitkem performed all pH and flashpoint analyses within one week from sample collection. The reactive sulfide analyses were performed within 14 days or less from collection, which is within a factor of two of the EPA MICE-suggested one week holding time for the total sulfide test. Data validation guidelines generally consider analyses performed within a factor of two of the holding time to be usable as estimates. Because EPA has serious doubts about the reliability of the reactivity analyses as discussed above, the data should be considered to be estimates ("J" qualifier) regardless of holding time.

Reactive cyanide analyses were performed within 14 days with the exception of three samples analyzed on the 15th day. All samples analyzed within 14 days are within the EPA's recommended holding time for the total cyanide analysis method. The three samples analyzed on the 15th day were analyzed within a factor of two of the holding time, and should also be considered estimates in the same manner as reactive sulfide. Please note that total cyanide analyses were also performed on these samples and that the total cyanide results ranged from 0.49 to 9.3 mg/kg, all below the SW-846 Section 7.3.3.2 interim threshold level of 250 mg/kg.

- f. Finally, the typical use for the RCRA characteristic analyses is to determine if the material should be disposed as a hazardous waste. Different waste haulers may have different criteria for acceptability of analytical data. Mitkem spoke with the waste hauler used by their company (Univar, Inc.) to determine their procedures. They stated that since no specific holding time is provided in the method, they do not evaluate holding times to determine acceptability of data for these RCRA characteristics.
- 2. In your data summary for the VOCs, you report the results of SF-2004-B03 and SF-2004-B03DL, but do not report the results of SF-2004-B03DL1. Would you let me know if SF-2004-B03DL1 was disregarded from the summary because it exceeded the holding time? If not, please let me know why you disregarded the results of SF-2004-B03DL1.

The results for SF-2004-B03DL1 should have been included in the data summary. These results are included in the full data package and the EQUIS-format EDD from the laboratory. They were omitted from the data summary due to an oversight; no other samples have more than one dilution as B03 did. CDM will provide these results with the final data package.

3. On page 3, the narrative statement, under Volatile Analysis, the lab manager mentions lists SF-2004-B01 as one of the samples that was reanalyzed at dilution using smaller sample aliquots. I believe this should be changed to sample SF-2004-B01A since SF-2004-B01 was not analyzed.

Yes, that was a typographical error. The sample in question was sample SF-2004-B01A. CDM will provide a corrected page.

4. It appears that the method blanks met the required detection limits, but there were several methods with compounds that were reported as not detected at concentrations greater than the required detection limit. For all the analyses, would you please report the detection limit for each parameter, and, if the detection limit exceeded the required detection limit, please provide an explanation. By the detection limit, I mean the threshold concentration below which the target analyte concentration would be reported as undetected.

For those cases where the method blank met the required detection limit, but the sample results did not (PCBs, SVOCs, and VOCs), either/or the following were true:

o the elevated percent moisture in the sediment samples caused elevated reporting limits. The reporting limits are adjusted to a "dry weight" basis and many of the samples contained 50 to 67% moisture, resulting in 2 to 3 times higher reporting limits. Method blanks are calculated at 100% solids, so the reporting limit is not elevated due to dry weight adjustments.

- Certain samples also required analysis at dilution due to concentrations of target and non-target analytes. This also served to elevate the reporting limits, up to 10 times, but these were in samples that had high concentrations of analytes.
- o For hexavalent chromium, the laboratory method detection limit is 1 mg/kg and the typical reporting limit is 4 mg/kg; actual reporting limits were 5 to 12 due to percent moisture.
- 5. Would you please provide the dates for the TCLP extractions for the VOCs and the extractions for the analyses of Chromium VI?
 - TCLP extractions for the VOCs were conducted on 4/27/04 for samples B02, B03, B05, and D05, on 4/28/04 for samples B07, B10, B11, B12, and B13, and 4/29/04 for samples B1A, B04, B06, B08, and B09. These extraction dates are listed in file CO344_CDM_CHICAGO_EQUIS_SW8260B_TCLP.xls, "lab test" worksheet, Column Q for leachate date.
 - Hexavalent chromium was prepared on 5/4/04 (lab full data package pages 4821-4822).
- 6. I believe there is a minor error on page 210, because the date received for sample SF-2004-D05 is reported as 05/22/04 and the date analyzed is 04/28/04.

Yes that was a typographical error. The date received should read 4/22/04. CDM will provide a corrected page.

7. As listed in the CDM summary, the methods for hexavalent chromium (7196), ammonia nitrogen (SM 4500), chemical oxygen demand (SM 5220), and total organic carbon (415.1) differed from the methods planned in the Scope of Work (SOW) and CDM Sampling Plan. Would you please provide the reasons for using these different methods?

Several methods listed in the Sampling Plan apply only to aqueous media (COD by 410.4, Ammonia Nitrogen by 350.2, Hexavalent Chromium by 3500 and TOC by 9060). The samples for this project were sediment samples, so the methods listed do not directly apply and the SAP was in error.

Mitkem analyzed the samples by equivalent methods for sediment or soil matrix for the applicable target parameters as covered in CFR 40 Part 136 Subchapter D, for COD and Ammonia Nitrogen. Mitkem analyzed the samples for TOC in soil by the Loyd Kahn modification to method 415.1, which specifically addresses soil samples, and analyzed hexavalent chromium by SW-846 Methods 3060/7196A, which also specifically addresses soil samples. CDM's chemist and data validator,

Scott Kirchner, has reviewed the analytical methods performed and believes the analyses performed by the laboratory are suitable for sediment/soil samples.

8. Per the SOW and Table 5 of the CDM Sampling Plan, %Total Solids by Method 160.3 was supposed to be performed, but I did not see the results in the summary. For Method 160.3, the results are reported in units of mg/L. I noticed that percent solids analyses are reported along with the grain size distributions, but the method for this determination was not reported. Would you please let me know the method used to determine the percent solids with the grain size distributions, and tell me if Method 160.3 was performed?

%Total solids by Method 160.3 is designed for aqueous samples only, so the SAP was in error. Following discussion with CDM, Mitkem performed % solid test (also called % moisture) according to their standard operating procedures (SOPs). This procedure is generally the same as Method 160.3 (loss of weight after oven drying). These results were reported on page 4828 of the main data package and CDM will add these results to the data tables in Appendix D of the final report. CDM's chemist and data validator, Scott Kirchner, believes the analyses performed by the laboratory are suitable for sediment/soil samples.

9. A significant number of MS/MSD samples were outside the recovery limits and several were outside the QC limits. SW 846 Method 8000B (8.5) explains how to determine the concentration of the MS and LCS for chromatographic separations. Would you let me know why the laboratory selected the particular spike concentrations that were chosen for each of the methods?

The laboratory used spike concentrations near the mid-point of the calibration curves, as allowed by SW-846. The MS/MSD spike concentrations were the same as used for the LCS.

CDM and Mitkem believes that matrix interference exists for several of the tests, which has caused some MS/MSD results to exceed control limits, but the data are still useable.

- For the VOCs MS/MSD, where 50 of 132 results were outside of recovery limits, only 1 of 7 historical samples (and only 3 VOCs of more than 30 on the VOCs target analyte list) had an elevated VOC concentration, so normal spike concentrations were used.
- o For the SVOCs MS/MSD, where 49 out of 128 results were outside of recovery limits, the target analytes per the SOW were non-PAHs. Past sampling data provided in the SOW typically showed non-detects for non-PAH SVOCs (e.g., phenols), so past data did not indicate particularly high concentrations that would suggest using the 2-to-4-times spiking level. Therefore, normal spike concentrations were used.

Other QC measures, such as laboratory control sample recoveries and surrogate standard recoveries, were evaluated by the laboratory to assess whether the matrix spike control limit exceedances were due to sample-related conditions or to laboratory QC issues. Sample chromatograms were also evaluated for non-target compound interferences. For these samples, the laboratory believes the matrix spike exceedances are due to sample-related conditions, not due to laboratory QC failures. Some recoveries were above control limits, some below, not indicating a clear directional bias.

The LCS results recoveries were within criteria, while many MS/MSD recoveries were not for certain analytical tests, indicating <u>matrix interference</u>. The matrix spike recovery and RPD issues were discussed in the project narrative.

- O As described in SW-846: Per SW-846 Method 8000, Section 8.5.5, the matrix spike recoveries were evaluated and compared to the recoveries in the associated laboratory control sample. Where LCS data are within the limits, but matrix spike recoveries exceed the limits, matrix interference is indicated.
- o Per Army EM 200-1-3, Section I.11.4.3, where concentrations of target analytes exceed spike concentrations, recoveries are invalid, and indicate matrix interference.

Appendix F Particle Size Laboratory Results

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

ETR(s) #:

99787

Client Code:

MITKEM

Job No.:

N/A

SDG(s):

99787

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568680

Sample ID: 02D SF-2004-B02

Percent Solids:

58.1%

Maximum Particle Size:

9.5 mm

Specific Gravity:

1.44

Shape (>#10): Hardness (> #10):

angular hard

0.9% Non-soil mass: fine gravel | crs sand | med sand

coarse gravel fine sand silt clay 100 90 80 70 60 50 40 30 20 10 0 10 100000 10000 1000 100 1

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.9	1.1
#10	2000	98.7	0.3
#20	850	98.2	0.5
#40	425	96.8	1.4
#60	250	95.1	1.6
#80	180	91.7	3.5
#100	150	91.2	0.5
#200	75	82.2	8.9
Hydrometer	66.3	81.7	0.5
1	42.8	67.5	14.2
	25.5	46.2	21.3
1	18.2	39.1	7.1
l l	13.1	32.0	7.1
1	6.3	28.4	3.6
V	2.7	27.8	0.6

Soil	Percent of
Classification	Total Sample
Gravel	1.1
Sand	16.7
Coarse Sand	0.3
Medium Sand	1.9
Fine Sand	14.6
Silt	50.3
Clay	32.0

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM

24000 Project No.: N/A Job No.:

ETR(s) #: 99787 SDG(s): 99787

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568681

Sample ID: 03D SF-2004-BU3

Percent Solids: 45.2% 1.84 Specific Gravity: Non-soil mass: 0.5%

Maximum Particle Size: Crs sand

Shape (> #10): angular

brittle Hardness (> #10):

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.7	0.3
#20	850	99.0	0.6
#40	425	98.0	1.0
#60	250	96.5	1.5
#80	180	93.9	2.7
#100	150	92.8	1.1
#200	75	80.1	12.6
Hydrometer	47.0	79.2	1.0
	30.7	61.6	17.6
I	18.3	44.0	17.6
1	13.0	38.1	5.9
I	9.5	32.3	5.9
1	4.5	26.4	5.9
V	1.9	25.9	0.5

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	19.9
Coarse Sand	0.3
Medium Sand	1.6
Fine Sand	17.9
Silt	47.9
Clay	32.3

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code:

Project No.:

24000

ETR(s) #:

99787

Date Received: 23-Apr-04

MITKEM

Job No.: Start Date: 23-Apr-04

N/A

SDG(s): End Date: 30-Apr-04

99787

Lab ID: 568682

Sample ID: 04C

SF-2004-601

54.3%

Maximum Particle Size: 19 mm

Percent Solids: Specific Gravity:

2.34

Shape (> #10): subangular

2.3% Non-soil mass:

Hardness (> #10):

Particle Size,	, microns ((um))
----------------	-------------	------	---

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	99.1	0.9
#4	4750	97.6	1.6
#10	2000	95.5	2.1
#20	850	89.0	6.5
#40	425	79.8	9.2
#60	250	71.3	8.4
#80	180	62.2	9.1
#100	150	57.4	4.7
#200	75	19.1	38.4
Hydrometer	39.7	14.9	4.2
	25.4	12.7	2.3
	14.7	12.5	0.2
i	10.7	10.2	2.3
I	7.6	9.1	1.1
I	3.7	7.9	1.1
V	1.5	7.7	0.2

Soil	Percent of
Classification	Total Sample
Gravel	2.4
Sand	78.5
Coarse Sand	2.1
Medium Sand	15.7
Fine Sand	60.7
Silt	10.0
Clay	9.1

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

ETR(s) #: 99787

Client Code:

MITKEM

Job No.:

N/A

SDG(s): 99787

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568683

Sample ID: 05C SF-2004-G02

Percent Solids: Specific Gravity:

Non-soil mass:

43.8%

1.96 4.4% Maximum Particle Size:

9.5 mm

Shape (>#10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.7	0.3
#10	2000	99.6	0.1
#20	850	97.4	2.2
#40	425	94.8	2.6
#60	250	90.7	4.0
#80	180	81.4	9.3
#100	150	75.1	6.3
#200	75	32.5	42.6
Hydrometer	47.2	29.7	2.8
1	29.9	29.7	0.0
1	17.3	27.4	2.3
	12.6	22.9	4.6
I	8.6	20.6	2.3
	4.3	16.0	4.6
v	1.8	16.0	0.0

Soil	Percent of
Classification	Total Sample
Gravel	0.3
Sand	67.2
Coarse Sand	0.1
Medium Sand	4.9
Fine Sand	62.3
Silt	11.9
Clay	20.6

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM

Project No.: 24000

N/A

ETR(s) #: SDG(s): 99787

Date Received:

23-Apr-04

Start Date: 23-Apr-04

Job No.:

End Date: 30-Apr-04

99787

Lab ID: 568684

Sample ID: 06D

SF-2004-805

Percent Solids:

Non-soil mass:

49.2%

Maximum Particle Size:

19 mm

Specific Gravity:

1.88 2.3% Shape (>#10):

angular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	85.0	15.0
#4	4750	81.6	3.4
#10	2000	77.5	4.1
#20	850	75.5	2.0
#40	425	73.1	2.3
#60	250	70.3	2.8
#80	180	66.7	3.7
#100	150	66.1	0.5
#200	75	58.3	7.9
Hydrometer	46.1	55.6	2.7
1	30.1	42.3	13.3
	17.7	33.5	8.8
	12.5	26.9	6.6
	9.1	22.1	4.8
	4.6	17.7	4.4
V	1.9	15.5	2.2

Soil	Percent of
Classification	Total Sample
Gravel	18.4
Sand	23.3
Coarse Sand	4.1
Medium Sand	4.3
Fine Sand	14.8
Silt	36.2
Clay	22.1

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code:

24000 Project No.:

ETR(s) #:

99787

Date Received:

MITKEM 23-Apr-04 Job No.:

N/A

SDG(s): 99787

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568685

Sample ID: 07D SF-2004-D05

Percent Solids:

50.6%

Maximum Particle Size:

19 mm

Specific Gravity:

1.87

Shape (>#10): Hardness (>#10):

angular hard

Non-soil mass: 0.8%

coarse gravel | fine gravel | crs sand | med sand fine sand silt clay 100 90 80 60 40 30 20 10 0 100000 10000 1000 100 10 1

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	98.3	1.7
#4	4750	91.5	6.7
#10	2000	87.6	4.0
#20	850	84.6	3.0
#40	425	81.5	3.1
#60	250	78.0	3.5
#80	180	73.6	4.4
#100	150	72.8	0.9
#200	75	64.1	8.7
Hydrometer	45.6	61.4	2.7
	29.5	52.5	9.0
	17.7	34.5	18.0
	12.6	27.4	7.1
I	9.2	25.1	2.2
1	4.6	20.6	4.5
V	1.9	20.6	0.0

Soil	Percent of
Classification	Total Sample
Gravel	8.5
Sand	27.4
Coarse Sand	4.0
Medium Sand	6.1
Fine Sand	17.4
Silt	39.0
Clay	25.1

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code:

Project No.:

24000 N/A

ETR(s) #: SDG(s):

99787 99787

Date Received:

MITKEM 23-Apr-04 Job No.:

End Date: 30-Apr-04

Start Date: 23-Apr-04

Lab ID: 568686

Sample ID: 08D SF-2004- BOIA

Percent Solids:

49.7%

Maximum Particle Size:

9.5 mm

Specific Gravity:

1.73

Shape (>#10):

angular

Non-soil mass: 1.4% Hardness (>#10):

hard

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	97.7	2.3
#10	2000	95.2	2.5
#20	850	92.8	2.4
#40	425	88.6	4.2
#60	250	83.2	5.3
#80	180	75.8	7.4
#100	150	75.1	0.7
#200	75	65.2	9.9
Hydrometer	50.1	64.7	0.5
	32.4	55.5	9.2
	19.2	43.9	11.6
	13.7	34.3	9.6
	10.0	29.7	4.6
I	4.8	25.0	4.6
V	2.1	20.8	4.2

Soil	Percent of
Classification	Total Sample
Gravel	2.3
Sand	32.5
Coarse Sand	2.5
Medium Sand	6.7
Fine Sand	23.4
Silt	35.5
Clay	29.7

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

ETR(s) #: 99787

Client Code:

Date Received:

MITKEM 23-Apr-04 Job No .:

N/A

SDG(s): 99787

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568687

Sample ID: 09D SF-2004-BO9

Percent Solids: Specific Gravity: 45.4%

1.84

0.9% Non-soil mass:

Maximum Particle Size:

Crs sand

Shape (> #10): angular

Hardness (> #10): brittle

Particle Size,	microns ((um))
----------------	-----------	------	---

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	99.0	0.9
#40	425	97.8	1.2
#60	250	95.3	2.5
#80	180	89.8	5.4
#100	150	88.8	1.0
#200	75	71.2	17.7
Hydrometer	47.5	68.1	3.1
1	31.0	51.7	16.3
1	18.4	40.4	11.3
	12.8	32.2	8.2
l	9.4	26.8	5.4
1	4.6	21.3	5.4
V	2.0	18.6	2.7

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	28.8
Coarse Sand	0.0
Medium Sand	2.2
Fine Sand	26.6
Silt	44.4
Clay	26.8

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM

Project No.: Job No .: 24000

ETR(s) #:

99787

Date Received: 23-Apr-04

N/A Start Date: 23-Apr-04

SDG(s): End Date: 30-Apr-04

99787

Lab ID: 568688

Sample ID: 10D SF-2004-B04

Percent Solids:

60.0%

Maximum Particle Size: 9.5 mm

Specific Gravity: Non-soil mass: 1.37

0.3%

Shape (>#10): subangular

Hardness (> #10):

hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.0	1.0
#10	2000	98.4	0.6
#20	850	97.7	0.6
#40	425	96.8	0.9
#60	250	95.2	1.6
#80	180	92.7	2.5
#100	150	92.2	0.5
#200	75	90.1	2.1
Hydrometer	69.2	89.5	0.7
1	44.8	77.9	11.5
	26.7	60.6	17.3
	19.3	49.1	11.5
1	13.6	37.0	12.0
	6.9	31.3	5.8
V	2.9	26.0	5.3

Soil	Percent of
Classification	Total Sample
Gravel	1.0
Sand	8.9
Coarse Sand	0.6
Medium Sand	1.6
Fine Sand	6.7
Silt	53.1
Clay	37.0

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

99787 ETR(s) #:

Client Code: Date Received:

MITKEM 23-Apr-04

Job No.: Start Date: 23-Apr-04

N/A

SDG(s):

99787 End Date: 30-Apr-04

Lab ID: 568689

Sample ID: 11C SF-2004-603

Percent Solids: Specific Gravity:

Non-soil mass:

67.7%

2.30 2.5% Maximum Particle Size: Med sand Shape (> #10):

N/A Hardness (>#10): N/A

Sieve size	Particle size, um	Percent finer	Incremental percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0

3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	98.4	1.6
#40	425	96.4	2.0
#60	250	93.2	3.2
#80	180	85.5	7.6
#100	150	78.5	7.0
#200	75	14.0	64.6
Hydrometer	40.8	10.1	3.9
1	25.9	9.3	0.8
	15.0	9.3	0.0
	10.7	8.3	1.0
ł	7.8	6.6	1.7
	3.8	5.9	0.7
V	1.6	5.9	0.0

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	86.0
Coarse Sand	0.0
Medium Sand	3.6
Fine Sand	82.4
Silt	7.4
Clay	6.6

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

N/A

Client: MITKEM

Project No.: 24000 ETR(s) #:

Client Code: MITKEM

Job No.:

SDG(s):

99787 99787

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568690

Sample ID: 12D SF-2004-B08

Percent Solids:

54.6%

Maximum Particle Size: 9.5 mm

Specific Gravity: 2.27

Shape (>#10): subangular

Non-soil mass:

3.2%

Hardness (> #10):

hard

Particle	Size,	microns ((um))
----------	-------	-----------	------	---

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.3	0.7
#10	2000	97.6	1.7
#20	850	95.4	2.2
#40	425	88.5	6.9
#60	250	75.7	12.7
#80	180	66.7	9.0
#100	150	65.5	1.3
#200	75	44.8	20.6
Hydrometer	39.9	24.5	20.3
1	25.6	20.7	3.9
1	15.0	16.8	3.9
	10.7	15.5	1.3
	7.4	14.2	1.3
- 1	3.8	10.3	3.9
V	1.6	9.3	1.1

Soil	Percent of
Classification	Total Sample
Gravel	0.7
Sand	54.4
Coarse Sand	1.7
Medium Sand	9.1
Fine Sand	43.6
Silt	30.6
Clay	14.2

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM Project No.: Job No.: 24000 N/A

ETR(s) #: 99787

99787 SDG(s):

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568691

Sample ID: 13D SF-2004-BO6

Percent Solids: Specific Gravity: 72.9% 2.50

Maximum Particle Size: Shape (>#10):

25 mm angular

Non-soil mass:

0.1%

Hardness (>#10): hard

Particle Size	e, microns	(um)
---------------	------------	------

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	88.9	11.1
3/8 inch	9500	72.2	16.7
#4	4750	58.8	13.3
#10	2000	45.5	13.3
#20	850	40.4	. 5.2
#40	425	34.1	6.2
#60	250	27.4	6.7
#80	180	22.0	5.4
#100	150	21.4	0.6
#200	75	15.6	5.8
Hydrometer	36.6	8.7	6.9
1	23.3	8.2	0.5
	13.7	6.3	1.9
	9.6	5.4	1.0
.	7.1	4.9	0.5
	3.5	3.9	1.0
V	1.5	3.4	0.5

Soil	Percent of
Classification	Total Sample
Gravel	41.2
Sand	43.2
Coarse Sand	13.3
Medium Sand	11.4
Fine Sand	18.5
Silt	10.7
Clay	4.9

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

ETR(s) #:

99787

Date Received: 23-Apr-04

Client Code: MITKEM

Job No.: Start Date: 23-Apr-04

N/A

SDG(s): 99787 End Date: 30-Apr-04

Lab ID: 568692

Sample ID: 14C SF-2004-GO4

Percent Solids:

53.9%

Maximum Particle Size: Crs sand

Specific Gravity:

2.53

Shape (>#10):

angular

Hardness (> #10):

hard

0.2% Non-soil mass: fine sand silt

P	ar	ticle	: Size,	microns	(um))
---	----	-------	---------	---------	------	---

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.8	0.2
#20	850	98.5	-1.3
#40	425	96.1	2.4
#60	250	90.0	6.1
#80	180	71.1	19.0
#100	150	46.4	24.7
#200	75	11.8	34.6
Hydrometer	38.1	9.6	2.1
	24.2	8.6	1.1
	14.0	8.6	0.0
	9.9	7.5	1.1
	7.1	7.5	0.0
_ I .	3.4	5.7	1.8
V	1.4	5.3	0.4

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	88.2
Coarse Sand	0.2
Medium Sand	3.7
Fine Sand	84.4
Silt	4.3
Clay	7.5

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

ETR(s) #: 99787

Client Code:

MITKEM

Job No.:

N/A

SDG(s): 99787

Date Received: 23-Apr-04

Start Date: 23-Apr-04

End Date: 30-Apr-04

Lab ID: 568693

Sample ID: 15D SF-2004-B07

Percent Solids: Specific Gravity: 47.0% 2.10

Maximum Particle Size:

19 mm

Shape (>#10):

angular hard

Non-soil mass:

0.8%

Hardness (>#10):

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	96.1	3.9
#4	4750	94.0	2.1
#10	2000	93.2	0.8
#20	850	92.4	0.8
#40	425	90.8	1.6
#60	250	88.6	2.2
#80	180	86.2	2.4
#100	150	83.5	2.7
#200	75	68.5	15.0
Hydrometer	41.5	59.0	9.6
1	27.0	47.2	11.8
1	15.8	40.1	7.1
1	11.4	30.7	9.4
	8.2	28.3	2.4
	3.9	21.6	6.7
V	1.7	19.3	2.4

Soil	Percent of
Classification	Total Sample
Gravel	6.0
Sand	25.5
Coarse Sand	0.8
Medium Sand	2.4
Fine Sand	22.3
Silt	40.2
Clay	28.3

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM **Client Code:**

Project No.:

24000

ETR(s) #: 99787

Date Received:

MITKEM 23-Apr-04

Job No.: Start Date: 23-Apr-04

N/A

99787 SDG(s):

End Date: 30-Apr-04

Lab ID: 568693DP

Sample ID: 15DREP

Percent Solids: Specific Gravity:

Non-soil mass:

46.3%

0.6%

2.13

Maximum Particle Size:

19 mm

Shape (> #10):

angular

Hardness (> #10):

hard

Particle Size,	microns ((um)	١
----------------	-----------	------	---

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	98.5	1.5
#4	4750	96.6	1.9
#10	2000	95.7	0.9
#20	850	94.9	0.8
#40	425	93.4	1.5
#60	250	91.2	2.2
#80	180	88.9	2.2
#100	150	86.4	2.5
#200	75	71.1	15.3
Hydrometer	41.4	55.2	15.9
1	26.6	48.0	7.2
	15.7	38.4	9.6
1	11.4	31.6	6.8
ı	8.1	29.2	2.4
	3.9	22.4	6.8
V	1.7	17.2	5.2

Soil	Percent of
Classification	Total Sample
Gravel	3.4
Sand	25.5
Coarse Sand	0.9
Medium Sand	2.3
Fine Sand	22.3
Silt	41.9
Clay	29.2

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code:

MITKEM

Project No.: 24000 Job No.: N/A

99816 ETR(s) #: SDG(s): 99787

Date Received: 26-Apr-04

Start Date: 26-Apr-04

End Date: 30-Apr-04

Lab ID: 568878

Sample ID: 16D SF-2004-BB

Percent Solids: 78.0% Specific Gravity: 2.55

Non-soil mass: 1.5% Maximum Particle Size:

19 mm Shape (>#10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	91.1	8.9
#4	4750	83.1	7.9
#10	2000	63.6	19.5
#20	850	37.1	26.5
#40	425	16.5	20.6
#60	250	9.5	7.0
#80	180	6.4	3.1
#100	150	4.9	1.5
#200	75	3.5	1.4
Hydrometer	38.3	3.4	0.1
<u> </u>	24.2	3.4	0.0
l	14.0	3.4	0.0
	10.1	3.4	0.0
	6.8	3.4	0.0
I	3.4	2.9	0.6
V	1.4	2.8	0.1

Soil	Percent of
Classification	Total Sample
Gravel	16.9
Sand	79.6
Coarse Sand	19.5
Medium Sand	47.1
Fine Sand	13.0
Silt	0.1
Clay	3.4

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM

Project No.:

24000

Job No.: N/A

99816 ETR(s) #:

99787 SDG(s):

Date Received:

26-Apr-04

Start Date: 26-Apr-04

End Date: 30-Apr-04

Lab ID: 568879

Sample ID: 17D SF -2004-BR

Percent Solids:

48.5%

Maximum Particle Size: Crs sand

Specific Gravity:

2.16

Shape (> #10): subangular

Non-soil mass:

1.8%

Hardness (> #10):

hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	98.5	1.4
#40	425	96.5	2.0
#60	250	94.3	2.2
#80	180	91.1	3.1
#100	150	86.7	4.5
#200	75	66.3	20.4
Hydrometer	39.1	45.1	21.2
I	25.4	37.6	7.5
l	15.1	28.6	9.0
	10.7	24.1	4.5
l.	7.7	21.4	2.7
I	3.9	16.9	4.5
V	1.6	13.7	3.2

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	33.7
Coarse Sand	0.0
Medium Sand	3.4
Fine Sand	30.2
Silt	44.9
Clay	21.4

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM

Project No.:

24000

99816 ETR(s) #:

Client Code:

MITKEM

Job No.:

N/A

SDG(s):

Date Received: 26-Apr-04

Start Date: 26-Apr-04

End Date: 30-Apr-04

99787

Lab ID: 568880

Sample ID: 18D SF-2004 -BII

Percent Solids: Specific Gravity: 70.2% 2.50

Maximum Particle Size: 19 mm

Shape (> #10):

angular Hardness (> #10): brittle

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	97.8	2.2
#4	4750	95.6	2.3
#10	2000	90.5	5.1
#20	850	79.8	10.7
#40	425	64.5	15.3
#60	250	49.3	15.2
#80	180	35.4	13.9
#100	150	24.4	11.0
#200	75	7.0	17.4
Hydrometer	38.2	6.3	0.8
ļ	24.3	5.5	0.8
	14.0	5.5	0.0
	9.7	5.5	0.0
1	7.1	4.8	0.8
	3.6	4.1	0.6
V	1.5	4.0	0.1

Soil	Percent of
Classification	Total Sample
Gravel	4.4
Sand	88.6
Coarse Sand	5.1
Medium Sand	26.0
Fine Sand	57.4
Silt	2.3
Clay	4.8

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: MITKEM Client Code: MITKEM

Project No.: 24000 Job No.: N/A

ETR(s) #: 99816

Date Received: 26-Apr-04

Start Date: 26-Apr-04

SDG(s): 99787 End Date: 30-Apr-04

Lab ID: 568881

Sample ID: 19C SF-2004-GOS

Percent Solids:

76.1%

Maximum Particle Size: Crs sand

Specific Gravity: Non-soil mass:

2.57 0.0% Shape (>#10): subangular

Hardness (> #10): hard

Sieve .	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	99.4	0.6
#20	850	97.5	1.8
#40	425	91.4	6.2
#60	250	67.9	23.5
#80	180	35.4	32.4
#100	150	15.4	20.0
#200	75	4.7	10.7
Hydrometer	38.1	3.5	1.2
1	24.2	2.9	0.6
1	14.0	2.9	0.0
l	9.7	2.9	0.0
l	7.1	2.9	0.0
1	3.3	2.9	0.0
V	1.4	2.9	0.0

Soil	Percent of	
Classification	Total Sample	
Gravel	0.0	
Sand	95.3	
Coarse Sand	0.6	
Medium Sand	8.0	
Fine Sand	86.7	
Silt	1.8	
Clay	2.9	

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217.

Client: MITKEM

Project No.:

24000

ETR(s) #: 99816

Client Code: MITKEM

Job No.:

N/A

SDG(s): 99787

Date Received: 26-Apr-04

Start Date: 26-Apr-04

End Date: 30-Apr-04

19 mm

Lab ID: 568882

Sample ID: 20D SF-2004-BIO

Percent Solids: **Specific Gravity:**

48.3%

Maximum Particle Size:

Shape (>#10): angular

Non-soil mass:

2.07 11.5%

Hardness (> #10):

hard

Particle Size,	, microns ((um)
----------------	-------------	------

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	98.3	1.7
#4	4750	98.0	0.4
#10	2000	97.7	0.2
#20	850	95.1	2.7
#40	425	89.9	5.2
#60	250	84.3	5.6
#80	180	77.7	6.5
#100	150	69.6	8.1
#200	75	38.2	31.4
Hydrometer	44.9	19.3	18.9
1	28.4	19.3	0.0
I	16.4	19.3	0.0
I	11.3	15.8	3.5
	8.3	15.8	0.0
I	4.0	12.7	3.2
V	1.7	10.6	2.0

Soil	Percent of		
Classification	Total Sample		
Gravel	2.0		
Sand	59.8		
Coarse Sand	0.2		
Medium Sand	7.8		
Fine Sand	51.7		
Silt	22.3		
Clay	15.8		

Dispersion Device: Mechanical mixer with

a metal paddle.